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Characterization and Measurement Details

The crystal structure of the samples was analyzed by X-ray diffraction (XRD, Brucker,

D8 ADVANCED) with Cu-Kα radiation (λ=1.5406 Å, 40 kV, 40 mA). The

morphology of the samples was observed using field emission scanning electron

microscope (FESEM, HITACHI, S4800) with a working voltage and current of 5.0

kV and 10 μA, respectively. The JEOL JEM-2100F transmission electron microscope

(TEM) was used to analyse the material morphology, the operating voltage, current

and current density of 200 kV, 212 μA and 511.8 pA/cm2, respectively. The XPS

spectra in this study were obtained using a Thermo Scientific ESCALAB 250Xi

spectrometer equipped with a monochromatic X-ray source (Al kα). During X-ray

photoelectron spectra acquisition, the energy resolution ≤ 0.5 eV, pass energy = 10 eV.

Calibrate the main peak position of the C 1s peak for contaminated carbon to 284.8

eV, then use the Shirley background subtraction method, with the subtraction

operation performed in Avantage. Based on the expected chemical states of the

elements and a standard binding energy database, preliminary peak positions were set.

The peak positions, peak areas, and half-widths were optimised using the non-linear

least squares fitting function in Avantage. Finally, the fitting quality was assessed by

visually inspecting the fit of the curve to the raw data and the randomness of the

residual plot.

The mixtures of ZnIn2S4, FeCoNi, ZnIn2S4-500, ZnIn2S4-600, ZnIn2S4-700, FCNZ,

FCNZ-500, FCNZ-600, and FCNZ-700 composites with 60 wt% paraffin was

compacted into coaxial ring of 7 mm outer diameter and 3.04 mm inner diameter to

assess EM wave absorption performance.



Supplementary Figures and Tables

Supplementary Figure 1. EDS spectra of FCNZ-600.

Supplementary Figure 2. The XRD pattern of synthesized ZnIn2S4, FeCoNi, and

FeCoNi@ZnIn2S4.



Supplementary Figure 3. (A) The complex permittivity, (B) complex permeability,

(C) average complex permittivity, (D-F) 3D and (G-I) 2D reflection loss diagrams of

ZnIn2S4-500, ZnIn2S4-600, and ZnIn2S4-700.

Supplementary Figure 4. (A) C0-f curve of composites, (B) α-f curve of composites.



Supplementary Table 1. Microwave absorption performance of core-shell

structured absorbers in previous references and this work.

Sample EAB (GHz) RLmin (dB)
Thickness

(mm)
Reference

Fe3O4@C 1.6 -47 2 [1]

Fe3O4@ppy 2.4 -46 5 [2]

Ni@C@ZnO
3.3 -55.8 2.50

[3]
4.10 -27 2.00

Ni@ppy 3.8 -48 5 [4]

H-Fe3O4@C 5.36 -51.85 2.1 [5]

Fe/Fe3C@SiO2@C 3.74 -48.68 1.24 [6]

Fe3O4@SiO2@MoSe2 4.96 -51.8 1.8 [7]

Fe3Al@PPy 3.44 -40.53 2.0 [8]

NiFe2O4@PPy
5.2 -56.25 2.24

[9]
7.12 - 2.6

C@NiCo2O4@Fe3O4 2.1 -43 3.4 [10]

FCNZ-600
4.91 -52.4 1.9 This Work

6.08 -34.7 1.53 This Work
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