Supplementary Material

The Inc-MAPKAPK5-AS1 promotes colon cancer-derived liver metastasis via modulating the tumor microenvironment: an *in silico* study and immunohistochemistry validation

Xiangzhi Hu^{1,2}, Dedong Wang¹, Jinbin Chen³, Ke Tang⁴, Qiqi Yan⁵, Di Wu^{1,4}

¹Guangzhou Center for Disease Control and Prevention, School of Public Health, Guangzhou Medical University, Guangzhou 511436, Guangdong, China. ²Infectious Disease Control Department, Yidu Center for Disease Control and Prevention, Yidu 443300, Hubei, China.

³Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, Guangdong, China.

⁴School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China.

⁵Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China.

Supplementary Figure 1. Batch effect assessment and correction validation. (A) Precorrection PCA demonstrates strong batch separation by source dataset (GSE18549, GSE41258, and GSE49355), indicating significant platform-derived technical variation. (B) Post-ComBat PCA shows effective batch removal with overlapping sample distributions and preserved biological variance in PC1/2. (C) Post-correction heatmap reveals homogeneous sample relationships without residual batch-specific clustering patterns.