

Supplementary Materials

Circular RNA hsa-circ-0001030 suppresses proliferation and cisplatin tolerance in TSCC via interaction with PKM2

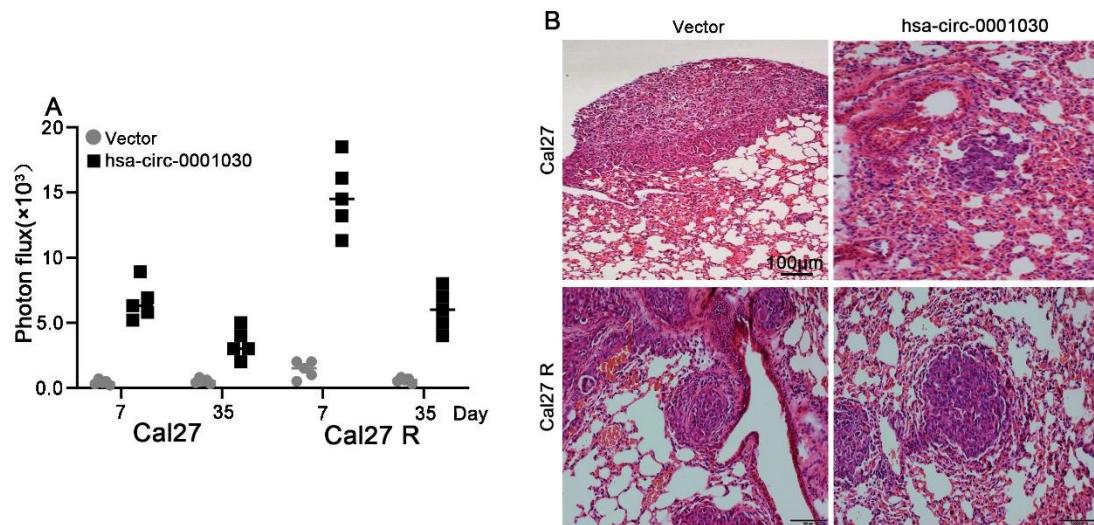
Haojie Yang^{1,2,#}, Yingzhe Yan^{1,2,#}, Zicong Tan^{1,2,#}, Xiaoying Xu^{1,2}, Kang Chen^{1,2}, Qin Li^{2,3}, Ning Liufu^{1,2}, Fengtao Ji^{1,2}

¹Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong, China.

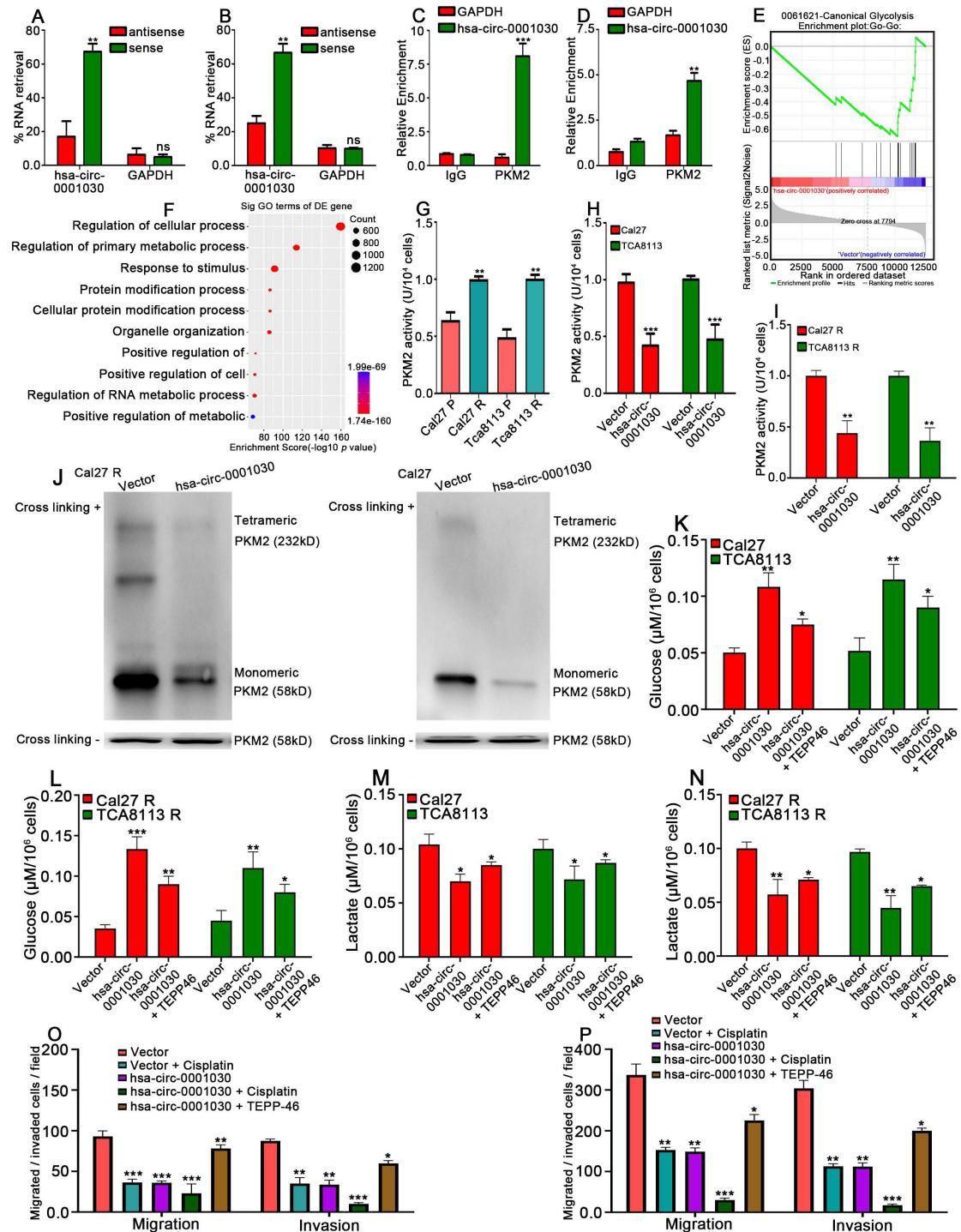
²Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong, China.

³Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, Guangdong, China.

[#]These authors contributed equally to this work and share first authorship.


Correspondence to: Prof. Fengtao Ji, Ning Liufu, Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong, China. E-mail: jift@mail.sysu.edu.cn; liufn3@mail.sysu.edu.cn

Supplementary Table 1. Primer sequence


	Forward Sequence (5'-3')	Reverse Sequence (5'-3')
ACTB	CATGTACGTTGCTATCCAGGC	CTCCTTAATGTCACGCACGAT
GAPDH	TGCACCACCAACTGCTTAGC	GGCATGGACTGTGGTCATGAG
Hsa-circ-0001030	AGCAAACGTAGGGGACCAGATG	GCTTCAGCTCTTCCATTGCT
Hsa-circ-0000319	CAATGTGGAAGGTCCGGAGG	TTGAAGCCAGGCATGCTGAT
Hsa-circ-0008015	TCCATCATGTACACAGGAGCAC	TGGTACCGATTGCGACCAGTG
Hsa-circ-0009043	GGAGAGCATCCGCAAACATT	TAGTCGACACTGCTTCAGCTC
Hsa-circ-0009161	TCGCAATCGGTACCAAAGGT	CCGATCTGGAAAGCTGTGAT
Hsa-circ-0039943	AGGAGGTGGCTTATGAAAGTGT	GCAGCAAGGCCTAATTCCAC
Hsa-circ-0075650	ACTTGAGACGAGAGCTGCAA	CACACCTTGAGCAGAAAGACC
EXOC6B	TCCTGCGAGAGATCGAGAGC	CTTCTCCATGAAACGTCCATGT
U6	CTCGCTTCGGCAGCACATATACT	ACGCTTCACGAATTGCGTGTC

Supplemental Table 2. Hsa-circ-0001030 expression and clinicopathological parameters

Variables	Expression		Total	P value
	Low	High		
Sex			0.156	
Male	38	26	64	
Female	10	14	24	
Age (year)			0.83	
≤ 61	28	22	50	
> 61	20	18	38	
TNM stage			0.002	
I / II	36	17	53	
III / IV	12	23	35	
Grade			0.04	
I	11	18	29	
II/III	37	22	59	

Supplementary Figure 1. Hsa-circ-0001030 inhibits TSCC growth and pulmonary metastasis *in vivo*. (A) Quantitative analysis of bioluminescent radiance intensity in each group of tumor-bearing mice, showing reduced signal intensity in the hsa-circ-0001030 overexpression group compared with the vector control group; (B) Representative hematoxylin–eosin (HE) staining images of lung sections from each group, demonstrating fewer and smaller metastatic nodules in mice overexpressing hsa-circ-0001030.

Supplementary Figure 2. Hsa-circ-0001030 directly binds to PKM2 and regulates glycolytic activity in TSCC cells. (A and B) Specific binding of biotin-labeled probes to hsa-circ-0001030 was validated by qRT-PCR, confirming probe specificity; (C and D) RNA immunoprecipitation (RIP) analysis showing significant enrichment of hsa-circ-0001030 in samples immunoprecipitated with anti-PKM2 antibody compared with IgG control; (E) Gene Set Enrichment Analysis (GSEA) of transcriptomic profiles revealing downregulation of the glycolytic pathway in cells overexpressing

hsa-circ-0001030 compared with controls; (F) Gene Ontology (GO) enrichment analysis of differentially expressed genes between the hsa-circ-0001030 overexpression group and the control group, indicating that hsa-circ-0001030 modulates cellular metabolic processes; (G) Enzymatic activity assay of PKM2 among Cal27P, Cal27R, Tca8113P, and Tca8113R cells, showing elevated PKM2 activity in cisplatin-resistant sublines; (H and I) PKM2 activity assays demonstrating that hsa-circ-0001030 overexpression reduces PKM2 enzymatic activity in both parental and resistant TSCC cells; (J) Representative Western blot analysis of PKM2 oligomeric status in Cal27 and Cal27R cells with or without *hsa-circ-0001030* overexpression. Cell lysates were treated with 0.025% glutaraldehyde for cross-linking (+) or left untreated (-) prior to SDS-PAGE. The high-molecular-weight bands (~232 kDa) represent the tetrameric form of PKM2, whereas the 58 kDa bands correspond to monomeric PKM2; (K and L) Glucose consumption assays showing that hsa-circ-0001030 overexpression decreases glucose uptake in TSCC cells; (M and N) Lactate production assays demonstrating that hsa-circ-0001030 overexpression significantly lowers lactate output in TSCC cells; (O and P) Quantitative analysis of Transwell assays confirming that hsa-circ-0001030 overexpression suppresses the migration and invasion abilities of TSCC cells.