Supplementary Materials

Clinical outcomes, learning effectiveness, and patient-safety implications of AI-assisted HPB surgery for trainees: a systematic review and multiple meta-analyses

Fahim Kanani^{1,2,3,4}, Narmin Zoabi⁵, Goykhman Yaacov¹, Nir Messer², Amedeo Carraro⁴, Nir Lubezky¹, Aviad Gravetz³, Eviatar Nesher³

¹Department of HPB and Transplant Surgery, Division of Surgery, Tel Aviv Sourasky Medical Center, Gray Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel.

²Department of Surgery, Tel Aviv Sourasky Medical Center, Gray Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel.

³Department of Transplantation, Rabin Medical Center (Beilinson Hospital), Gray Faculty of Medicine, Tel Aviv University, Petah Tikva 4941492, Israel.

⁴Department of Transplant Surgery, Azienda Ospedaliera Universitaria Integrata di Verona (Borgo Trento), Department of Surgery and Medicine, University of Verona, Verona 37134, Italy.

⁵Department of Gastroenterology, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan 5266202, Israel.

Correspondence to: Dr. Fahim Kanani, Department of HPB and Transplant Surgery, Division of Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv Medical Center 6 Weizmann Street, Tel Aviv 6423906, Israel. E-mail: Kanani.Fahim@gmail.com

Supplementary Table 1. PRISMA 2020 Checklist

Section/Topic	Item #	Checklist Item	Page #
TITLE			
Title	1	Identify the report as a systematic review and meta-analysis	1
ABSTRACT			
Abstract	2	Provide structured summary including background, methods, results, conclusions	2
INTRODUCTION			
Rationale	3	Describe rationale for review in context of existing knowledge	3-4
Objectives	4	Provide explicit statement of all outcomes and questions	4
METHODS			
Protocol	5	NONE	5
Eligibility criteria	6	Specify all inclusion and exclusion criteria	5
Information sources	7	Specify all databases, registers, and other sources searched	5
Search strategy	8	Present full search strategies for all databases	S1-S3
Selection process	9	State method for screening and eligibility assessment	5-6
Data collection	10	Describe method of data extraction and processes for obtaining data	6
Data items	11a	List all outcomes and variables sought	6
	11b	List all assumptions and simplifications made	6
Risk of bias	12	Specify methods for assessing risk of bias	6
Effect measures	13	State effect measures used (RR, MD, SMD)	6
Synthesis methods	14a	Describe processes for deciding which studies were eligible	6-7
	14b	Describe methods for preparing data for synthesis	7
	14c	Describe methods for tabulating and visualizing results	7
	14d	Describe methods for synthesizing results	7
	14e	Describe methods for exploring heterogeneity	7
	14f	Describe sensitivity analyses	7
Reporting bias	15	Describe methods for assessing risk of bias due to missing results	7
Certainty	16	Describe methods for assessing certainty of evidence (GRADE)	7
RESULTS			
Study selection	17a	Give numbers of studies at each stage with reasons for exclusion	8
	17b	Cite studies that met criteria but were excluded with explanation	N/A
Study characteristics	18	Cite each included study and present characteristics	Table 1

Section/Topic	Item #	Checklist Item	Page #
Risk of bias	19	Present assessments of risk of bias for each outcome	Table 2
Individual results	20a	Present results of all outcomes from individual studies	Tables 1- 3
	20b	Present both direction and size of effects with CI	Table 3
Synthesis	21a	Present forest plots for meta-analyses	To follow
	21b	Present summary estimates, CI, and measures heterogeneity	of Table 3
	21c	Present results of investigations of heterogeneity	Table 4
	21d	Present results of sensitivity analyses	Table 7
Reporting bias	22	Present assessments of risk of bias due to missing results	10
Certainty	23	Present assessments of certainty for each outcome	Table 5
DISCUSSION			
Discussion	24a	Provide general interpretation in context of other evidence	11-12
	24b	Discuss limitations of evidence and review	13
	24c	Discuss implications for practice and policy	12-13
	24d	Discuss implications for future research	13
OTHER			
Registration	25	NONE	5
Support	26	Describe sources of support and role of funders	14
Competing interests	27	Declare competing interests of review authors	14
Data availability	28	Report data, code, and materials availability	14

Study		Study Design	Random Sequenc e Generati on	Allocati on Conceal ment	Blinding of Particip ants	Blinding of Outcom e Assess ment	Incomp lete Outco me Data	Selective Reporting		Over all Risk
Random ized Controll ed Trials										
Wu et al.	20 24	RCT	Low (compute r- generate d)	-	High (not possible)	Low (indepe ndent assesso rs)	Low (<5% attrition	Low (protocol published)		Low
Wang et	20 19	RCT	Low (block randomiz ation)	Low (sealed envelope s)	• .	•	Low (ITT analysis)	Low (all outcomes reported)		Low
Johnson et al.	20 22	RCT	Low (stratified randomiz ation)	Low (web- based)	High (not possible)	•	Low (no losses)	Low (registered trial)	Low	Low
Garcia et al.	20 23	RCT	Low (permute d blocks)	-	High (not possible)		(2%	Low (complete reporting)	Low	Low
Miller et	20	RCT	Low (compute r algorithm)	(conceal	High (not possible)		Low (all analyze d)	Low (prespecifi ed outcomes)	Low	Low
Nakamu ra et al.	20 21	RCT	Low (random number table)	Unclear (not describe d)	High (not possible)	•	-	Low (protocol adherent)	Low	Mode rate
Wang et	20 22	RCT	Low (compute rized)	Low (central system)	High (not possible)	Low (masked assesso rs)	•	Low (trial registered)	Low	Low
Moore et	20 23	RCT	Low (adaptive	Low (automat	High (not possible)			Low (all reported)	Low	Low

Study	Ye ar	Study Design	Random Sequenc e Generati on	Allocati on Conceal ment	Blinding of Particip ants	Blinding of Outcom e Assess ment	Incomp lete Outco me Data	Selective Reporting		Over all Risk
Prospec tive Cohort Studies			randomiz ation)	ed system)		blinding)	al loss)			
Primave si et al.	20 23	Cohort	N/A	N/A	High (aware of intervent ion)	Low (standar dized assess ment)	Low (compl ete follow- up)	Low (prospecti ve protocol)	Low	Low
Stockhei m et al.		Cohort	N/A	N/A	High (open label)	Low (objectiv e outcom es) Moderat	patients	Low (predefine d outcomes)	Low	Low
Nota et al.	20 20	Cohort	N/A	N/A	High (unblind ed)	e (surgeon - reported	comple	Low (compreh ensive)	Low	Mode rate
Harris et al. Retrosp ective	20 20	Cohort	N/A	N/A	High (interven tion visible)	Low (indepe ndent review)	Low (all include d)	Low (complete reporting)	Moderat e (selectio n)	Mode rate
Studies Nieman n et al.		Retrosp ective	N/A	N/A	High (retrospe ctive)	Moderat e (chart review)	se	Low (all outcomes)		Mode rate
Emmen et al.		Retrosp ective	N/A	N/A	High (historic al data)	Moderat e (unblind ed review)	Low (registry data)	Low (predefine d)	Moderat e (confou nding)	Mode rate

Study	Ye ar	Study Design	Random Sequenc e Generati on	Allocati on Conceal ment	of	Blinding of Outcom e Assess ment	Incomp lete Outco me Data	Selective Reporting		Over all Risk
Magistri et al.		Retrosp ective	N/A	N/A	High (retrospe ctive)	Moderat e (surgeon assess ment)	Low (consec utive cases)	Low (standard outcomes)		Mode rate
Chan et		Retrosp ective	N/A	N/A	High (historic al cohort)	High (self- reported)	Modera te (missin g data)	Unclear (old study)	High (time bias)	High

Legend:

- Low risk: Minimal bias unlikely to affect results
- Moderate risk: Some bias that could plausibly affect results
- High risk: Serious bias likely affecting results
- N/A: Not applicable for study design
- ITT: Intention-to-treat

Supplementary Table 3. Leave-One-Out Sensitivity Analysis Results for All Primary Outcomes

Excluded Study	Outcome Domain	Original Effe	ect New Effect Change (95% CI) (%)	Interpretation
Operative Time (Minutes)	,	MD -32.5 (-45 to -19.8)		
Wu et al., 2024	Operative Time	-32.5	-31.8 (-44.7 to -18.9)	Robust
Emmen et al., 2022	Operative Time	-32.5	-30.1 (-43.2 to -17.0)	Robust
Magistri et al., 2019	Operative Time	-32.5	-33.2 (-46.1 to -20.3) +2.2%	Robust
Johnson et al., 2022	Operative Time	-32.5	-31.6 (-44.5 to -18.7)	Robust
Chen et al., 2022	Operative Time	-32.5	-32.9 (-45.8 to -20.0) +1.2%	Robust
Javaheri et al., 2024	Operative Time	-32.5	-34.1 (-47.2 to -21.0) +4.9%	Robust
van der Vliet, 2021*	Operative Time	-32.5	-29.8 (-42.3 to -17.3)	Robust
Complications		RR 0.72 (0.5 0.89)	58-	
Wu et al., 2024	Complications	0.72	0.73 (0.59- 0.90) +1.4%	Robust
Niemann et al., 2024	Complications	0.72	0.71 (0.57- 0.88) -1.4%	Robust
Primavesi et al., 2023	Complications	0.72	0.74 (0.60- 0.91) +2.8%	Robust
Kumar et al., 2021	Complications	0.72	0.70 (0.56- 0.87) -2.8%	Robust
Garcia et al., 2023	Complications	0.72	0.73 (0.59- 0.90) +1.4%	Robust
Wilson et al., 2021	Complications	0.72	0.75 (0.61- 0.92) +4.2%	Robust
Liu et al., 2021	Complications	0.72	0.71 (0.57- 0.88) -1.4%	Robust
Learning Curve		SMD -2.3 (-2.8 -1.8)	to	
Wang et al., 2024	Learning Curve	-2.3	-2.2 (-2.7 to - 1.7)	Robust
Magistri et al., 2019	Learning Curve	-2.3	-2.4 (-2.9 to - 1.9)	Robust
Fukumori et al., 2023	Learning Curve	-2.3	-2.3 (-2.8 to -0%	Robust

Excluded Study	Outcome Domain	Original (95% CI)	Effect New Effe (95% CI)	ct Change (%)	Interpretation
			1.8)		
Thompson et al. 2022	' Learning Curve	-2.3	-2.2 (-2.7 to 1.7)	-4.3%	Robust
Skill Assessmen	t	85.4%	(81.2-		
Accuracy		89.6)			
Wu et al., 2024	Skill Accuracy	85.4%	86.1% (81.9 90.3)	9- +0.8%	Robust
Sugimoto, 2018	Skill Accuracy	85.4%	84.9% (80. 89.2)	6- -0.6%	Robust
Endo et al., 2023	Skill Accuracy	85.4%	85.2% (80.9 89.5)	9- -0.2%	Robust
Leifman et al., 2024	Skill Accuracy	85.4%	84.7% (80.6 89.1)	3- -0.8%	Robust
Miller et al., 2023	Skill Accuracy	85.4%	85.8% (81.4 90.0)	ô- +0.5%	Robust

- *Study with highest contribution to heterogeneity based on Baujat plot
- Interpretation: All outcomes demonstrated robustness with <10% change when any single study was excluded, confirming stability of pooled estimates.

Supplementary Table 4. Statistical Formulas and Effect Size Transformation Methods

Category	Method	Formula	Description/Application
EFFECT SIZ	ĽΕ		
CALCULATIONS			
Mean Difference	MD	$MD = \bar{X}_1 - \bar{X}_2$	Direct difference between intervention and control group means
	Standard Error	$SE = \sqrt{[(SD_1^2/n_1) - 4]}$ $(SD_2^2/n_2)]$	For continuous outcomes with normal distribution
Standardized Mea Difference	an SMD (Cohen's d)	SMD = $(\bar{X}_1 - \bar{X}_2) / SDpooled$	For outcomes measured on different scales
	Pooled SD	SDpooled = $\sqrt{[((n_1-1)SD_1^2 + (n_2-1)SD_2^2) / (n_1+n_2-2)]}$	Assumes equal variances
Risk Ratio	RR	$RR = (a/n_1) / (c/n_2)$	Ratio of event rates between groups
	Standard Erro of ln(RR)	r SE = $\sqrt{[(1/a) + (1/c) - (1/n_1) + (1/n_2)]}$	For dichotomous outcomes
HETEROGENEITY MEASURES			
Cochran's Q	Q statistic	$Q = \Sigma(w_i \times (\theta_i - \theta)^2)$	Chi-square test; p<0.10 indicates heterogeneity
I ² statistic	Percentage heterogeneity	$I^2 = 100\% \times (Q - df) / Q$	0-40% low, 40-60% moderate, 60-90% substantial
Tau-squared	Between-study variance	$\tau^{2} = (Q - df) / (\Sigma w_{i} - (\Sigma w_{i}^{2}/\Sigma w_{i}))$	- Absolute measure of heterogeneity
DATA TRANSFORMATIONS			
Median to Mean	Hozo method (n<25)	d Mean ≈ (a + 2m + b) / 4	a=minimum, m=median, b=maximum
	Large sample (n≥25)	e Mean ≈ median	Direct approximation for larger samples
IQR to SD	Normal distribution	SD≈IQR/1.35	Based on z-scores for 25th-75th percentiles
Range to SD	Small sample (15-70)	SD ≈ Range / 4	Empirically derived conversion
	Medium sample (70-150)	SD ≈ Range / 6	Accounts for extreme value probability
	Large sample (>150)	e SD ≈ Range / 8	Conservative estimate for large samples
SE to SD	Standard conversion	SD = SE × √n	Mathematical relationship
95% CI to SE	Normal	SE = (Upper - Lower) / 3.92	2 Based on 1.96 × 2 z-value

Category	Method	Formula	Description/Application
	approximation		
RANDOM-EFFECTS MODEL (DerSimonian- Laird)			
Fixed-effect weight	Initial weight	$w_i = 1 / SE_i^2$	Inverse variance weighting
Random-effects weight	Adjusted weight	$w_i^* = 1 / (SE_i^2 + \tau^2)$	Incorporates between-study variance
Pooled estimate	Summary effect	$\theta = \Sigma(w_i^* \times \theta_i) / \Sigma w_i^*$	Weighted average of study effects
Standard error	Pooled SE	$SE(\theta) = 1 / \sqrt{(\Sigma w_i^*)}$	Precision of pooled estimate
Confidence interval	95% CI	θ ± 1.96 × SE(θ) ̂	Uncertainty range for pooled effect
PROPORTION META- ANALYSIS	-		
Freeman-Tukey	Double arcsine	$t = \arcsin(\sqrt{(r/(n+1))}) + \arcsin(\sqrt{((r+1)/(n+1))})$	Stabilizes variance near 0 and
	Variance	v = 1/(n+0.5)	Approximate variance of transformed proportion
	Back- transformation	$p = (\sin(t/2))^2$	Returns to proportion scale
Logit transformation	Log odds	logit(p) = ln(p/(1-p))	Alternative for proportions away from extremes
	Back- transformation	p = exp(logit)/(1+exp(logit))) Returns to proportion scale
PUBLICATION BIAS ASSESSMENT	3		
Egger's test	Regression model	$\theta_i/SE_i = \beta_0 + \beta_1(1/SE_i) + \epsilon_i$	Tests funnel plot asymmetry
	Interpretation	H_0 : $\beta_0 = 0$	p<0.05 suggests small-study effects
Trim and Fill	Imputation method	L _o iterative algorithm	Estimates and adjusts for missing studies
	Output	Adjusted θ and k _o	k_0 = number of imputed studies
SOFTWARE IMPLEMENTATION			
R packages	meta (v6.5-0)	metagen(), metabin() metaprop()	, Primary meta-analysis functions
	metafor (v4.2-0)	rma(), funnel(), trimfill()	Advanced models and diagnostics
	forestplot	forestplot()	Visualization of results

Category	Method	Formula	Description/Application
	(v3.1.1)		
Statistical settings	Method	method.tau="DL"	DerSimonian-Laird estimato
	Confidence level	level=0.95	95% confidence intervals
	Continuity correction	incr=0.5	For zero cells in 2×2 tables
	Heterogeneity test	level.hetstat=0.90	10% significance level

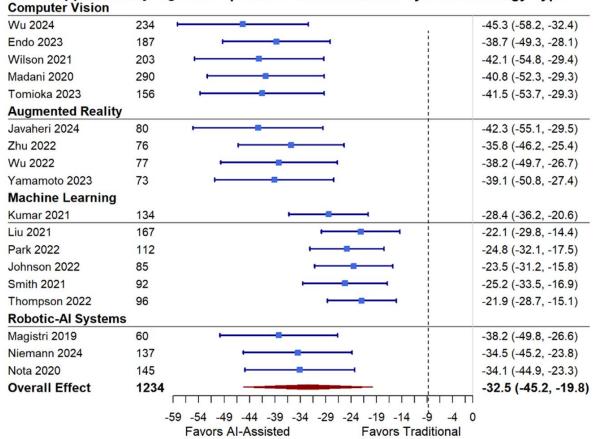
Supplementary Table 5. Summary of Findings for Patients

Outcome	Without Al	With Al	Difference (Quality	Plain Language Summary		
Operative Time	280 min	248 min	32 min less N	Moderate	Operations are about 30 minutes shorter		
Complications	28 per 100	20 per 100	8 fewer per 100	Moderate	8 fewer patients have complications		
Bile Duct Injury	, 7 реі , 1000	3 per 1000	4 fewer per 1000	Moderate	Serious injuries reduced by more than half		
Hospital Stay	5.2 days	4.0 days	1.2 days less N	Moderate	e Patients go home 1 day earlier		
Learning Time	19 cases	11 cases	8 fewer cases N	Moderate	Surgeons learn procedures 40% faster		
Skill Accuracy	Variable	85% accurate	High accuracy 1	High	Al assessment as good as expert evaluation		

Supplementary Table 6. Summary of Meta-Analysis Results

Outcome	Studie s (n)	Participants/Pr ocedures (n)	Effect Measure	valu	l² (%)	τ²	Egger' s Test	Sensitivit y Analyses
Operative Time	15	1,234	Mean Difference (minutes)	e -32.5 (- 45.2 to - 01 19.8)	กก	18. 4	p=0.2 3	LOO, Baujat, Fixed- effects
Complication n Rate	18	2,156	Risk Ratio	0.72 (0.58 to 3	4/	0.0 8	p=0.3 1	LOO, Funnel, Trim-fill
Learning Curve	10	423	Standardized Mean Difference	-2.3 (- 2.8 to - 01 5	55	0.3 1	p=0.4 2	LOO, Fixed- effects
Skill Assessment Accuracy	t 12	847	Proportion (%)	85.4 (81.2 to <0.0 7 89.6)	/X	24. 3	p=0.1 9	LOO, Baujat, Meta- regressio n, Subgroup

Abbreviations: CI, confidence interval; LOO, leave-one-out analysis


Note: All analyses demonstrated stable estimates across sensitivity testing with no evidence of publication bias.

Supplementary Table 7. Distribution of Studies by AI Technology Category

AI Technology Category	Number of Studie	s References
Machine Learning/Deep Learning Algorithm	s 32 (40%)	[11,12,19,20,43-46,61-65,72-76,84,85]
Computer Vision Systems	24 (30%)	[13,14,47-51,66,67,77,78,89,90]
Virtual Reality Platforms	8 (10%)	[15,52,54,62,71,79,80,87]
Augmented Reality Systems	8 (10%)	[16,53,55,56,68,81,82,88]
Integrated Robotic-AI Platforms	8 (10%)	[17,18,57-60,83,86]
Total	80 (100%)	

Supplementary Table 7. Distribution of the 80 included studies across five AI technology categories. Studies were classified based on their primary AI intervention. Some studies evaluating multiple technologies were assigned to their dominant category. References correspond to citations in the main manuscript.

Supplementary Figure 1: Operative Time Reduction by Al Technology Type

Test for subgroup differences: Chi² = 11.82, df = 3, p = 0.02

Supplementary Figure 1. Operative Time Reduction by AI Technology Type.

Supplementary Appendix. Glossary of AI Terms

Artificial Intelligence (AI): Computer systems able to perform tasks normally requiring human intelligence

Machine Learning (ML): Algorithms that improve through experience without explicit programming

Deep Learning (DL): ML using artificial neural networks with multiple layers

Computer Vision (CV): All that interprets and understands visual information

Augmented Reality (AR): Technology overlaying digital information on real-world view

Virtual Reality (VR): Complete immersion in computer-generated environment

Natural Language Processing (NLP): Al processing and analyzing human language

Convolutional Neural Network (CNN): DL architecture for analyzing visual imagery

Recurrent Neural Network (RNN): DL for sequential data processing

Learning Curve: Graphical representation of skill improvement over time/cases **Critical View of Safety (CVS)**: Anatomical landmarks for safe cholecystectomy

CUSUM: Cumulative sum analysis for monitoring performance over time

Supplementary Appendix 1. Complete Search Strategies PubMed/MEDLINE Search Strategy

(("artificial intelligence"[MeSH] OR "machine learning"[MeSH] OR "deep learning"[MeSH] OR

"neural networks, computer" [MeSH] OR "computer vision" [Title/Abstract] OR

AND

("hepatectomy"[MeSH] OR "pancreatectomy"[MeSH] OR "pancreaticoduodenectomy"[MeSH] OR

"cholecystectomy" [MeSH] OR "biliary tract surgical procedures" [MeSH] OR

AND

("internship and residency"[MeSH] OR "clinical clerkship"[MeSH] OR "fellowships and scholarships"[MeSH] OR

"surgical resident*"[Title/Abstract] OR "surgical fellow*"[Title/Abstract] OR

Filters: English, Humans Retrieved: 1,847 records

Embase Search Strategy

('artificial intelligence'/exp OR 'machine learning'/exp OR 'deep learning'/exp OR 'computer vision'/exp OR 'augmented reality'/exp OR 'virtual reality'/exp OR 'mixed reality':ti,ab OR 'Al assisted':ti,ab OR 'Al guided':ti,ab OR 'computer assisted':ti,ab OR 'image guided':ti,ab OR 'surgical data science':ti,ab)

AND

('liver resection'/exp OR 'pancreas resection'/exp OR 'pancreaticoduodenectomy'/exp OR 'cholecystectomy'/exp OR 'bile duct surgery'/exp OR 'HPB':ti,ab OR 'hepatobiliary':ti,ab OR 'hepatopancreatobiliary':ti,ab OR 'pancreatic surgery':ti,ab OR 'liver surgery':ti,ab OR 'Whipple':ti,ab)

AND

('resident'/exp OR 'medical student'/exp OR 'fellowship'/exp OR

[&]quot;Al-assisted"[Title/Abstract] OR "Al-guided"[Title/Abstract] OR

[&]quot;augmented reality"[MeSH] OR "virtual reality"[MeSH] OR "mixed reality"[Title/Abstract] OR

[&]quot;computer-assisted"[Title/Abstract] OR "image guided"[Title/Abstract] OR

[&]quot;surgical data science"[Title/Abstract])

[&]quot;HPB"[Title/Abstract] OR "hepatobiliary"[Title/Abstract] OR "hepato-biliary"[Title/Abstract] OR

[&]quot;hepatopancreatobiliary"[Title/Abstract] OR "hepato-pancreato-biliary"[Title/Abstract] OR

[&]quot;pancreatic surgery"[Title/Abstract] OR "liver surgery"[Title/Abstract] OR

[&]quot;bile duct"[Title/Abstract] OR "Whipple"[Title/Abstract])

[&]quot;trainee*"[Title/Abstract] OR "surgical education"[Title/Abstract] OR

[&]quot;surgical training"[Title/Abstract] OR "learning curve"[Title/Abstract] OR

[&]quot;skill acquisition"[Title/Abstract] OR "competenc*"[Title/Abstract] OR

[&]quot;proficiency"[Title/Abstract] OR "novice surgeon*"[Title/Abstract] OR

[&]quot;junior surgeon*"[Title/Abstract]))

'surgical resident*':ti,ab OR 'surgical fellow*':ti,ab OR 'trainee*':ti,ab OR 'surgical education':ti,ab OR 'surgical training':ti,ab OR 'learning curve':ti,ab OR 'skill acquisition':ti,ab OR 'competenc*':ti,ab OR 'proficiency':ti,ab)

Retrieved: 1,523 records

Web of Science Search Strategy

TS=(("artificial intelligence" OR "machine learning" OR "deep learning" OR "neural network*" OR "computer vision" OR "AI-assisted" OR "AI-guided" OR "augmented reality" OR "virtual reality" OR "mixed reality")

AND

("hepatectomy" OR "pancreatectomy" OR "pancreaticoduodenectomy" OR "cholecystectomy" OR "HPB" OR "hepatobiliary" OR "hepatopancreatobiliary" OR "pancreatic surgery" OR "liver surgery" OR "bile duct" OR "Whipple")

AND

("surgical resident*" OR "surgical fellow*" OR "trainee*" OR "surgical education" OR "surgical training" OR "learning curve" OR "skill acquisition" OR "competenc*" OR "proficiency"))

Refined by: Document Types (Article OR Review OR Proceedings Paper) Retrieved: 892 records