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1. Methods and Material 

Supplemental Table S1. Clinical features description 

Features Meaning 

Surgery category 
The types of surgery that patients have such as 

‘pneumonectomy', 'lobectomy', 'segmentectomy 

Ethnicity Tells the patient is Asian or not. 

Postoperative residual 

tumor 

Explains post-operation residual tumor with 'Microscopic', 

'Macroscopic', and 'Not Applicable' values 

Primary tumour 

resected 

Describes Primary Tumour Resected in surgery with 'Yes', 

'No', and 'Not Applicable' values 

Radiation therapy Shows if a person has radiation therapy or not 
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Dose category The total dose of radiotherapy 

Histology 
Describe the type of tumor Squamous cell carcinoma, 

Adenocarcinoma etc. 

Stage at diagnose Describes the cancer stage at diagnosis time 

Smoking category 
Describes three categories of smoking including current 

smokers, former smokers, and non-smokers 

Smoking Pack Years 

The pack-year is a unit for measuring the amount a person 

has smoked over a long period of time. It is calculated by 

multiplying the number of packs of cigarettes smoked per 

day by the number of years the person has smoked 

weight loss category Describe the amount of weight loss 

Chemotherapy Some patients have chemotherapy, and some others don't. 

Sex Male or Female 

Recurrence status 

means that the cancer has come back in the same place it 

first started.regional recurrence means that the cancer has 

come back in the lymph nodes near the place it first started. 

distant recurrence means the cancer has come back in 

another part of the body; some distance from where it 

started 

Metastasis Describes whether a patient has metastasis or not 

Correct baseline 

ECOG 

Describes 0—Fully active, 1—Restricted in physically 

strenuous activity but ambulatory and able to carry out 

work of a light or sedentary nature, 2—Ambulatory and 

capable of all self-care but unable to carry out any work 

activities, 3—Capable of only limited self-care, 4—

Completely disabled, 5—Dead 

duration Between the diagnosis date and Recurrence date 

Age at diagnosis Describes the age at diagnosis 

 

1.1. Image preprocessing and mask preparation 

1.1.1. Attenuation correction (AC)  

Attenuation correction (AC) is one of the most important corrections that need to be 

performed in PET imaging. AC methods aim to account for the photon attenuation 
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along each line of response (LOR). For this purpose, maps of the linear attenuation 

coefficients (LACs) for all the tissues and materials located in the PET field of view 

are generated or integrals of these values along all the LORs are directly measured. 

The procedure for including this information in the reconstruction (performing the 

actual correction) is similar [1]. 

 

1.1.2. Standardized Uptake Value (SUV) correction 

SUV is a quantitative measure used in PET imaging to supplement visual 

interpretation of PET images. It is a ratio of tissue radioactivity concentration to 

injected dose per unit body weight, normalized to the whole-body radioactivity 

concentration. SUV is a semiquantitative measure, simpler to calculate than fully 

quantitative measures like the influx constant K. It can be corrected for factors like 

body weight, lean body mass, and body surface area [2]. 

 

1.1.3. Min/max normalization technique 

Min-max normalization is a technique that transforms the values of a numerical 

variable to a standard range, usually between 0 and 1. It is useful for comparing data 

that have different scales or units of measurement. The formula for min-max 

normalization is: 

𝑥′ =  (𝑥 −  𝑚𝑖𝑛) / (𝑚𝑎𝑥 −  𝑚𝑖𝑛) 

where x is the original value, x' is the normalized value, min is the minimum value of 

the variable, and max is the maximum value of the variable. This technique is also 

known as feature scaling or rescaling [3, 4]. 

 

1.2. Feature extraction 

1.2.1. HRF Extraction 

In our investigation, we utilized two distinct strategies for image feature extraction: 

HRF and DRF. Within the HRF strategy, a total of 215 quantitative HRFs were 

derived from each delineated tumor region using the PySERA standardization process 

available in the ViSERA software [5]. The radiomic feature generation process in 

ViSERA aligns with the protocols established by the Image Biomarker 

Standardization Initiative (ISBI). The 215 HRFs encompassed a variety of feature 

types: 29 shape descriptors, 20 first-order statistics (FO), 30 intensity histogram 

parameters (IH), and 136 textural features. These textural features included 50 co-
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occurrence matrix attributes (CMs), 32 run-length matrix characteristics (RLMs), 16 

size zone metrics (SZMs), 16 distance zone parameters (DZMs), 5 neighborhood 

gray-tone difference matrix elements (NGTs), and 17 neighboring gray level 

dependence matrix indices (NGLs). HRFs were extracted from the segmented PET 

and CT images. 

 

1.2.2. DRF Extraction 

 

Supplemental Figure S1. Structure of our autoencoder model. The Encoder includes 

four convolutional layers, each followed by a batch normalization and a max-pooling 

operation. The decoder path includes four convolutional layers that three of them are 

followed by a batch normalization. F: Filters. 

 

1.3. Pearson’s correlation coefficient regression (R_Regression) 

Compute Pearson’s r for each feature and the target. Pearson’s r is also known as the 

Pearson correlation coefficient. Linear model for testing the individual effect of each 

of many regressors. This is a scoring function to be used in a feature selection 

procedure, not a free-standing feature selection procedure. The cross-correlation 

between each regressor and the target is computed as [6]: 

 

E[(X[:, i] - mean(X[:, i])) * (y - mean(y))] / (std(X[:, i]) * std(y)) 
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1.4. F-test for regression (F_Regression)\ 

Univariate linear regression tests returning F-statistic and p-values. Quick linear 

model for testing the effect of a single regressor, sequentially for many regressors. 

This is done in 2 steps: The cross correlation between each regressor and the target is 

computed using r_regression as: 

 

E[(X[:, i] - mean(X[:, i])) * (y - mean(y))] / (std(X[:, i]) * std(y)) 

 

It is converted to an F score and then to a p-value. F_Regression is derived from 

R_Regression and will rank features in the same order if all the features are positively 

correlated with the target [7]. 

 

1.5. Principal Component Analysis (PCA) 

PCA is a statistical unsupervised technique used in data analysis and Machine 

Learning (ML) to simplify the complexity of high-dimensional data while retaining 

most of the information. It works by identifying the directions, called principal 

components, along which the variability of the data is maximized. These components 

are orthogonal to each other and are derived from the eigenvectors of the data's 

covariance matrix, ranked according to their eigenvalues. In this study, PCA reduces 

the dimensionality by projecting the original data onto a smaller set of 10 significant 

components to prevent overfitting in ML prediction algorithm [8]. 
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1.6. WeilBull Accelerated failure time (AFT) 

Accelerated failure time (AFT) models are used widely in medical research, though to 

a much lesser extent than proportional hazards models. In an AFT model, the effect of 

covariates act to accelerate or decelerate the time to event of interest, that is, shorten 

or extend the time to event [9]. The Weibull model is a parametric survival model in 

which the outcome is assumed to follow a Weibull distribution. A unique property of 

the Weibull model is that when the accelerated failure time (AFT) assumption holds, 

the proportional hazards (PH) assumption also holds, making it compatible with both 

frameworks. In the PH formulation, the key assumption is that hazard ratios remain 

constant over time, whereas in the AFT formulation, survival times are assumed to 

accelerate or decelerate by a constant factor across covariate levels. This dual 

property is specific to the Weibull model and makes it especially useful in survival 

analysis [10]. 

 

1.7. Regression Algorithms (RA) 

1.7.1. K-Nearest Neighbour 

In supervised machine learning, the K-Nearest Neighbor (KNN) algorithm is a 

straightforward yet powerful technique for regression and classification. It works on 

the tenet that data points with comparable traits have a tendency to group together. 

KNN finds the 'K' nearest points (neighbors) in the training data when a new data 

point is added, and then assigns a value based on the average value for regression 

tasks or the majority class for classification tasks. The algorithm's non-parametric 

nature, which means it doesn't assume any particular distribution for the data points, is 

one of its advantages. This makes it adaptable to a variety of datasets. The 

performance of KNN is largely dependent on the value of 'K', the number of 

neighbors considered. An ideal 'K' balances the model's bias and variance to prevent 

overfitting or underfitting. Higher 'K' values produce more stable predictions because 

they analyze more data points and are less sensitive to noise. However, this can result 

in smoother decision boundaries, perhaps missing local nuances in the data. The 

approach relies on an appropriate distance measure, such as Euclidean or Manhattan 

distance, to locate the nearest neighbors [11]. 
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1.7.2. AdaBoost Regressor (ABR) 

Adaboost learning is a potent machine learning technique that enables the 

construction of highly accurate prediction models through the combination of multiple 

weak models. Adaboost, fundamentally, operates as an ensemble method wherein 

decision trees are iteratively trained to rectify the errors introduced by the preceding 

tree. By training each subsequent decision tree using the residuals of the previous tree, 

the model is able to evolve and develop gradually.The ultimate prognosis is computed 

by combining the predictions generated by each individual tree, assigning a weight to 

its accuracy-based contribution. This procedure enables Adaboost to effortlessly 

manage high-dimensional data and capture intricate interactions among features. In 

addition, built-in regularisation in Adaboost ensures that the model generalises well to 

new data and prevents overfitting. In general, Adaboost learning provides a resilient 

and adaptable approach for constructing accurate prediction models, rendering it a 

favoured option across an extensive variety of applications encompassing computer 

vision, natural language processing, and other domains [12]. 

 

1.7.3. Random Forest Regressor (RFR) 

A Random Forest Regressor is a form of machine learning model that predicts 

continuous outcomes using a collection of decision trees. It is widely used in 

regression problems that aim to predict a numerical value due to its capability of 

managing complicated relationships among variables and delivering precise estimates 

of uncertainty. Similar to other ensemble methods, a Random Forest Regressor 

generates a final output by combining the predictions of multiple trees. A random 

subset of the training data and features is used to train each tree, and the final 

prediction is calculated by summing the outputs of all trees. The utilisation of 

randomness in the feature and data selection processes serves to mitigate overfitting 

and enhances the model's capacity to extrapolate to novel data. In addition, the model 

is robust against outliers and can accommodate absent values. Applications such as 

finance, marketing, and healthcare, where predicting continuous outcomes is crucial 

and the model's ability to provide accurate estimates of uncertainty is valuable, 

frequently employ Random Forest Regressors [13]. 
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1.7.4. Multi-Layer Perceptron (MLPR) 

For regression tasks, Multi-Layer Perceptron (MLP) regressors are a type of neural 

network. An MLP regressor, as compared to a linear regression model that operates 

under the assumption of a linear association between the input features and output 

variables, employs multiple layers of artificial neurons to discover non-linear 

relationships. An input layer, one or more concealed layers, and an output layer create 

the model. Every hidden layer is composed of a specific group of neurons. In turn, 

each neuron executes a computation on the inputs it receives from the previous layer 

and subsequently transmits the result to the neurons in the following layer. The final 

output is generated by applying an activation function to the output of the final hidden 

layer. One notable benefit of MLP regressors is their capacity to identify intricate 

patterns within datasets, which enables them to model non-linear associations 

between inputs and outputs with remarkable accuracy. They are frequently 

implemented in medical diagnosis, stock price prediction, and weather forecasting, 

among other applications. Nevertheless, MLP regressors are susceptible to overfitting, 

particularly when challenged with enormous datasets, and require precise 

hyperparameter optimisation in order to attain peak performance [14]. 

 

1.7.5. Decision Tree Regressor (DTR) 

A Decision Tree Regressor is a form of machine learning model that predicts 

continuous outcomes using a tree-based structure. In contrast to the predefined 

categories employed by a conventional decision tree, a decision tree regressor 

generates predictions for continuous values, such as probabilities or prices. Based on 

the values of the input features, the model recursively divides the data into smaller 

subsets before fitting a statistical model, such as linear regression, to the data points 

within each subset. In order to arrive at the ultimate prediction, the tree is traversed 

from its root to each leaf node, where the predicted value is calculated using the 

attributes linked to that specific leaf node. When the relationships between the input 

features and the output variable are complex, decision tree regressors are beneficial; 

they can process both numeric and categorical features. In addition to being 

interpretable, which enables users to comprehend the methodology behind the model's 

predictions, these models are also applicable to classification and regression tasks. 

Nevertheless, decision tree regressors are susceptible to overfitting, which occurs 
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when the dataset contains an excessive number of irrelevant features; therefore, care 

must be taken to select the proper features and adjust the model's parameters [15].  

 

1.7.6. Linear Regression (LR)  

In machine learning, linear regression is a widely implemented algorithm employed 

for tasks involving the prediction of a continuous outcome variable from one or more 

input features. Linear regression is a statistical method that models the relationship 

between an output variable and input features through the use of a linear equation. 

The coefficients of the features are acquired through training with the data. The model 

operates under the assumption of a linear relationship between the output variable and 

the features, whereby any change in a feature results in a constant effect on the output 

variable, irrespective of the feature's level. As an algorithm for supervised learning, 

Linear Regression requires labelled training data in order to discover the connection 

between the input variable and the features. As a result of minimising the sum of 

squared differences between the predicted and actual values, the algorithm determines 

the linear equation that best describes the relationship between the output variable and 

the features. Linear regression is an exceptionally potent instrument used across many 

fields, including finance, economics, social sciences, and engineering, to predict 

continuous outcomes. Additionally, it provides an excellent basis for comprehending 

advanced algorithms in machine learning, including logistic regression and support 

vector machines [16].  

 

1.7.7. Support Vector Machine (SVR) 

For regression tasks, Support Vector Machine (SVM) regression is a type of machine 

learning algorithm. In contrast to conventional linear regression, which models the 

relationship between independent and dependent variables using a linear function, 

SVM regression maps inputs to outputs using a non-linear function. SVM regression 

operates on the principle of locating the hyperplane that divides the data points into 

distinct classes at the highest level possible. The objective of regression tasks is to 

identify the hyperplane where the mean squared error between the predicted and 

actual values is minimised. Support vector regression accomplishes this objective by 

optimising the margin separating the hyperplane from the closest data points. As the 

distance between the hyperplane and the support vectors, the margin signifies the 

model's robustness. A greater margin indicates an enhanced capacity of the model to 
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extrapolate to novel data. Support Vector Machine (SVM) regression proves to be 

highly advantageous when confronted with chaotic or unstructured data. Its usage 

extends across diverse domains, including finance, biology, and computer vision [17]. 

 

1.8. Hazard Ratio Survival Analysis (HRSA) 

1.8.1. Fast Survival Support Vector Machines (FSSVM) 

An expansion of the regular Support Vector Machine to right-censored time-to-event 

data is called a Survival Support Vector Machine. Its main benefit is that, with the use 

of the so-called kernel trick, it can take into account intricate, non-linear correlations 

between survival and attributes. The input features are implicitly mapped by a kernel 

function into high-dimensional feature spaces where a hyperplane can describe 

survival. Because of this, Survival Support Vector Machines may be applied to a large 

variety of data and are highly versatile [18]. 

 

1.8.2. Component-wise Gradient Boosting Survival Analysis (CWGBSA) 

Gradient Boosting is a flexible framework for optimizing a variety of loss functions 

rather than a specific model. It builds a strong overall model by aggregating the 

predictions of several base learners, according to the strength in numbers concept. The 

base learners are sometimes known as weak learners since they are frequently 

relatively basic models that perform slightly better than random guessing. The 

predictions are combined additively, meaning that the addition of a base model 

improves the model as a whole [19].  

 

1.8.3. Random Survival Forest (RSF)  

An ensemble of tree-based learners makes up a Random Survival Forest, just like its 

well-known counterparts for regression and classification. By 1) generating each tree 

using a unique bootstrap sample of the original training data and 2) only evaluating 

the split criterion for a randomly chosen subset of features and thresholds at each 

node, a Random Survival Forest ensures that individual trees are de-correlated. The 

ensemble's predictions are created by adding up the predictions of each individual tree 

[20]. 
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1.9.Pseudo-labeling 

Pseudo-labeling [21] is a technique for semi-supervised learning, which is a type of 

ML that uses both labeled and unlabeled data. Pseudo-labeling works by using a 

model trained on labeled data to predict the labels for unlabeled data, and then using 

those “pseudo labels” to train the model in a supervised way on the unlabeled data. 

This can help improve the accuracy and generalization of the model, especially when 

there is not enough labeled data available. Of course, ultimately the performance of 

such a framework is tested on a fully labeled dataset.  
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2. Results 

Supplemental Table S2. Results provided by regression algorithms (RA) 

Dataset 
C-

Index 
FSA 

Algorit

hm 

SL 

RMSE 

SL 

MAE 
SL R2 

SSL 

RMSE 

SSL 

MAE 
SSL R2 

T-test p-

value 

CF 0.68 FR KNN 1.41 1.07 0.00 1.52 1.19 -0.17 0.00 

CF 0.68 RR KNN 1.41 1.07 0.00 1.52 1.19 -0.17 0.00 

CF 0.56 RR ADB 1.42 1.09 -0.02 1.39 1.04 0.03 0.05 

CF 0.68 FR LRR 1.41 1.08 0.00 1.58 1.24 -0.25 0.13 

CF 0.68 RR LRR 1.41 1.08 0.00 1.58 1.24 -0.25 0.13 

CF 0.68 FR DTC 2.33 1.66 -1.73 1.79 1.37 -0.61 0.13 

CF 0.68 RR DTC 2.33 1.66 -1.73 1.79 1.37 -0.61 0.13 

CF 0.68 FR SVR 1.49 1.11 -0.11 1.53 1.21 -0.17 0.22 

CF 0.68 RR SVR 1.49 1.11 -0.11 1.53 1.21 -0.17 0.22 

CF 0.68 FR RFR 1.51 1.16 -0.14 1.54 1.21 -0.18 0.31 

CF 0.68 RR RFR 1.51 1.16 -0.14 1.54 1.21 -0.18 0.31 

CF 0.68 FR MLP 1.43 1.14 -0.02 1.53 1.21 -0.17 0.37 

CF 0.68 RR MLP 1.43 1.15 -0.02 1.46 1.16 -0.07 0.84 

CF 0.64 FR ADB 1.54 1.14 -0.19 1.47 1.13 -0.08 0.95 

CT_DRF 0.70 FR RFR 1.58 1.20 -0.25 9.02 3.62 -39.80 0.04 
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CT_DRF 0.70 FR DTC 2.04 1.45 -1.08 8.79 3.71 -37.82 0.05 

CT_DRF 0.65 FR ADB 1.60 1.13 -0.28 1.49 1.03 -0.12 0.07 

CT_DRF 0.50 RR MLP 1.41 1.09 0.00 1.55 1.18 -0.21 0.07 

CT_DRF 0.70 FR SVR 1.54 1.15 -0.19 15.32 4.81 -116.84 0.09 

CT_DRF 0.70 FR LRR 2.73 1.65 -2.73 17.98 5.23 -161.17 0.11 

CT_DRF 0.70 FR MLP 1.79 1.38 -0.60 14.82 4.62 -109.19 0.11 

CT_DRF 0.70 FR KNN 1.52 1.16 -0.16 7.90 2.62 -30.31 0.18 

CT_DRF 0.50 RR ADB 1.41 1.06 0.00 1.41 1.09 0.00 0.26 

CT_DRF 0.50 RR LRR 1.41 1.08 0.00 1.49 1.10 -0.11 0.73 

CT_DRF 0.50 RR DTC 1.41 1.08 0.00 1.43 1.07 -0.02 0.73 

CT_DRF 0.50 RR RFR 1.41 1.09 0.00 1.47 1.07 -0.08 0.77 

CT_DRF 0.50 RR SVR 1.42 1.05 -0.02 1.44 1.06 -0.03 0.78 

CT_DRF 0.50 RR KNN 1.41 1.08 0.00 1.50 1.08 -0.12 0.95 

CT_DRF+CF 0.65 FR MLP 1.74 1.30 -0.52 1.60 1.13 -0.28 0.00 

CT_DRF+CF 0.65 FR RFR 1.58 1.12 -0.25 1.52 1.06 -0.16 0.12 

CT_DRF+CF 0.50 RR MLP 1.41 1.08 0.00 1.52 1.15 -0.17 0.19 

CT_DRF+CF 0.50 RR ADB 1.41 1.09 0.00 1.41 1.07 0.00 0.26 

CT_DRF+CF 0.65 FR LRR 1.63 1.18 -0.33 1.62 1.12 -0.32 0.45 

CT_DRF+CF 0.65 FR DTC 1.83 1.22 -0.67 1.69 1.13 -0.44 0.45 
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CT_DRF+CF 0.65 FR ADB 1.49 1.04 -0.11 1.54 1.07 -0.18 0.65 

CT_DRF+CF 0.50 RR LRR 1.41 1.08 0.00 1.49 1.10 -0.11 0.73 

CT_DRF+CF 0.50 RR DTC 1.41 1.08 0.00 1.43 1.07 -0.02 0.73 

CT_DRF+CF 0.50 RR RFR 1.41 1.09 0.00 1.47 1.07 -0.08 0.77 

CT_DRF+CF 0.50 RR SVR 1.42 1.05 -0.02 1.44 1.06 -0.03 0.78 

CT_DRF+CF 0.65 FR SVR 1.46 1.08 -0.08 1.53 1.09 -0.17 0.86 

CT_DRF+CF 0.65 FR KNN 1.50 1.10 -0.12 1.54 1.09 -0.19 0.91 

CT_DRF+CF 0.50 RR KNN 1.41 1.08 0.00 1.50 1.08 -0.12 0.95 

CT_DRF+CF+CT_HRF 0.65 FR MLP 1.80 1.31 -0.62 1.56 1.12 -0.22 0.02 

CT_DRF+CF+CT_HRF 0.65 FR RFR 1.58 1.12 -0.25 1.52 1.06 -0.16 0.12 

CT_DRF+CF+CT_HRF 0.50 RR ADB 1.41 1.08 0.00 1.41 1.07 0.00 0.26 

CT_DRF+CF+CT_HRF 0.50 RR MLP 1.41 1.09 0.00 1.49 1.13 -0.12 0.35 

CT_DRF+CF+CT_HRF 0.65 FR LRR 1.63 1.18 -0.33 1.62 1.12 -0.32 0.45 

CT_DRF+CF+CT_HRF 0.65 FR DTC 1.83 1.22 -0.67 1.69 1.13 -0.44 0.45 

CT_DRF+CF+CT_HRF 0.65 FR ADB 1.46 1.04 -0.08 1.45 1.02 -0.05 0.65 

CT_DRF+CF+CT_HRF 0.50 RR LRR 1.41 1.08 0.00 1.49 1.10 -0.11 0.73 

CT_DRF+CF+CT_HRF 0.50 RR DTC 1.41 1.08 0.00 1.43 1.07 -0.02 0.73 

CT_DRF+CF+CT_HRF 0.50 RR RFR 1.41 1.09 0.00 1.47 1.07 -0.08 0.77 

CT_DRF+CF+CT_HRF 0.50 RR SVR 1.42 1.05 -0.02 1.44 1.06 -0.03 0.78 
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CT_DRF+CF+CT_HRF 0.65 FR SVR 1.46 1.08 -0.08 1.53 1.09 -0.17 0.86 

CT_DRF+CF+CT_HRF 0.65 FR KNN 1.50 1.10 -0.12 1.54 1.09 -0.19 0.91 

CT_DRF+CF+CT_HRF 0.50 RR KNN 1.41 1.08 0.00 1.50 1.08 -0.12 0.95 

CT_DRF+CT_HRF 0.65 FR MLP 1.76 1.30 -0.56 1.56 1.12 -0.22 0.03 

CT_DRF+CT_HRF 0.65 FR RFR 1.58 1.12 -0.25 1.52 1.06 -0.16 0.12 

CT_DRF+CT_HRF 0.50 RR MLP 1.41 1.08 0.00 1.53 1.15 -0.18 0.13 

CT_DRF+CT_HRF 0.50 RR ADB 1.41 1.08 0.00 1.41 1.07 0.00 0.26 

CT_DRF+CT_HRF 0.65 FR LRR 1.63 1.18 -0.33 1.62 1.12 -0.32 0.45 

CT_DRF+CT_HRF 0.65 FR DTC 1.83 1.22 -0.67 1.69 1.13 -0.44 0.45 

CT_DRF+CT_HRF 0.50 RR LRR 1.41 1.08 0.00 1.49 1.10 -0.11 0.73 

CT_DRF+CT_HRF 0.50 RR DTC 1.41 1.08 0.00 1.43 1.07 -0.02 0.73 

CT_DRF+CT_HRF 0.50 RR RFR 1.41 1.09 0.00 1.47 1.07 -0.08 0.77 

CT_DRF+CT_HRF 0.50 RR SVR 1.42 1.05 -0.02 1.44 1.06 -0.03 0.78 

CT_DRF+CT_HRF 0.65 FR ADB 1.60 1.12 -0.28 1.57 1.11 -0.24 0.85 

CT_DRF+CT_HRF 0.65 FR SVR 1.46 1.08 -0.08 1.53 1.09 -0.17 0.86 

CT_DRF+CT_HRF 0.65 FR KNN 1.50 1.10 -0.12 1.54 1.09 -0.19 0.91 

CT_DRF+CT_HRF 0.50 RR KNN 1.41 1.08 0.00 1.50 1.08 -0.12 0.95 

CT_HRF 0.74 RR KNN 1.41 1.09 0.00 1.49 1.21 -0.11 0.12 

CT_HRF 0.61 FR LRR 1.50 1.10 -0.13 1.47 1.05 -0.08 0.14 
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CT_HRF 0.74 RR SVR 1.77 1.41 -0.58 1.62 1.24 -0.31 0.24 

CT_HRF 0.74 RR LRR 1.45 1.10 -0.06 1.60 1.20 -0.29 0.27 

CT_HRF 0.59 RR ADB 1.50 1.13 -0.12 1.43 1.08 -0.03 0.28 

CT_HRF 0.61 FR DTC 1.71 1.28 -0.47 1.62 1.16 -0.31 0.34 

CT_HRF 0.61 FR ADB 1.41 1.02 0.01 1.47 1.08 -0.08 0.34 

CT_HRF 0.74 RR DTC 1.47 1.10 -0.08 1.55 1.20 -0.20 0.37 

CT_HRF 0.61 FR MLP 1.50 1.11 -0.12 1.42 1.06 -0.01 0.37 

CT_HRF 0.61 FR RFR 1.48 1.08 -0.11 1.54 1.13 -0.19 0.43 

CT_HRF 0.61 FR KNN 1.50 1.18 -0.12 1.50 1.14 -0.13 0.60 

CT_HRF 0.74 RR MLP 1.51 1.12 -0.14 1.46 1.15 -0.07 0.67 

CT_HRF 0.74 RR RFR 1.54 1.21 -0.20 1.58 1.19 -0.25 0.77 

CT_HRF 0.61 FR SVR 1.45 1.07 -0.06 1.46 1.07 -0.07 0.89 

CT_HRF+CF 0.74 RR LRR 1.46 1.15 -0.06 1.86 1.50 -0.74 0.00 

CT_HRF+CF 0.64 FR MLP 1.48 1.17 -0.11 2.27 1.76 -1.59 0.01 

CT_HRF+CF 0.74 RR SVR 1.52 1.11 -0.16 1.77 1.41 -0.57 0.02 

CT_HRF+CF 0.74 RR KNN 1.41 1.09 0.00 1.61 1.25 -0.30 0.09 

CT_HRF+CF 0.64 FR KNN 1.44 1.11 -0.05 1.39 1.02 0.04 0.09 

CT_HRF+CF 0.74 RR RFR 1.56 1.22 -0.22 1.81 1.40 -0.64 0.19 

CT_HRF+CF 0.64 FR ADB 1.55 1.17 -0.21 1.49 1.08 -0.11 0.20 
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CT_HRF+CF 0.64 FR SVR 1.43 1.06 -0.03 1.42 1.05 -0.01 0.24 

CT_HRF+CF 0.74 RR MLP 1.45 1.12 -0.05 1.49 1.20 -0.11 0.29 

CT_HRF+CF 0.64 FR DTC 1.57 1.15 -0.23 1.46 1.08 -0.07 0.45 

CT_HRF+CF 0.64 FR LRR 1.50 1.10 -0.13 1.48 1.08 -0.09 0.68 

CT_HRF+CF 0.64 FR RFR 1.46 1.08 -0.06 1.49 1.07 -0.12 0.92 

CT_HRF+CF 0.74 RR DTC 1.69 1.34 -0.44 2.00 1.36 -1.01 0.92 

CT_HRF+CF 0.59 RR ADB 1.47 1.10 -0.08 1.46 1.10 -0.08 0.96 

PET_DRF 0.66 FR RFR 1.32 1.02 0.12 1.73 1.23 -0.50 0.04 

PET_DRF 0.66 FR SVR 1.43 1.07 -0.02 1.49 1.13 -0.11 0.14 

PET_DRF 0.50 RR RFR 1.41 1.09 0.00 1.41 1.07 0.00 0.26 

PET_DRF 0.50 RR LRR 1.41 1.08 0.00 1.41 1.07 0.00 0.26 

PET_DRF 0.50 RR ADB 1.41 1.08 0.00 1.41 1.07 0.00 0.26 

PET_DRF 0.66 FR KNN 1.46 1.12 -0.07 1.62 1.20 -0.32 0.30 

PET_DRF 0.66 FR ADB 1.33 1.01 0.11 1.71 1.14 -0.47 0.31 

PET_DRF 0.50 RR DTC 1.41 1.08 0.00 1.42 1.06 -0.01 0.33 

PET_DRF 0.66 FR DTC 1.59 1.13 -0.27 1.96 1.31 -0.93 0.34 

PET_DRF 0.50 RR KNN 1.41 1.08 0.00 1.42 1.05 -0.02 0.38 

PET_DRF 0.66 FR MLP 1.45 1.14 -0.06 1.41 1.08 0.01 0.54 

PET_DRF 0.66 FR LRR 1.49 1.09 -0.11 1.59 1.14 -0.27 0.54 
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PET_DRF 0.50 RR MLP 1.41 1.09 0.00 1.48 1.10 -0.09 0.74 

PET_DRF 0.50 RR SVR 1.42 1.05 -0.02 1.42 1.05 -0.02  

PET_DRF+CF 0.67 FR RFR 1.32 1.02 0.13 1.59 1.17 -0.27 0.08 

PET_DRF+CF 0.67 FR SVR 1.43 1.07 -0.02 1.49 1.12 -0.11 0.22 

PET_DRF+CF 0.50 RR ADB 1.42 1.10 -0.01 1.41 1.06 0.00 0.26 

PET_DRF+CF 0.50 RR RFR 1.41 1.09 0.00 1.41 1.07 0.00 0.26 

PET_DRF+CF 0.50 RR LRR 1.41 1.08 0.00 1.41 1.07 0.00 0.26 

PET_DRF+CF 0.67 FR DTC 1.57 1.11 -0.24 1.83 1.28 -0.68 0.31 

PET_DRF+CF 0.50 RR DTC 1.41 1.08 0.00 1.42 1.06 -0.01 0.33 

PET_DRF+CF 0.67 FR MLP 1.48 1.20 -0.11 1.40 1.10 0.02 0.36 

PET_DRF+CF 0.50 RR KNN 1.41 1.08 0.00 1.42 1.05 -0.02 0.38 

PET_DRF+CF 0.67 FR ADB 1.36 1.03 0.07 1.56 1.12 -0.21 0.49 

PET_DRF+CF 0.67 FR LRR 1.48 1.09 -0.10 1.57 1.12 -0.24 0.50 

PET_DRF+CF 0.50 RR MLP 1.41 1.09 0.00 1.49 1.10 -0.12 0.63 

PET_DRF+CF 0.67 FR KNN 1.46 1.12 -0.06 1.50 1.13 -0.13 0.81 

PET_DRF+CF 0.50 RR SVR 1.42 1.05 -0.02 1.42 1.05 -0.02  

PET_DRF+CF+PET_HRF 0.66 FR MLP 1.49 1.21 -0.12 2.98 2.55 -3.45 0.00 

PET_DRF+CF+PET_HRF 0.66 FR ADB 1.51 1.12 -0.14 1.90 1.36 -0.82 0.07 

PET_DRF+CF+PET_HRF 0.66 FR RFR 1.43 1.12 -0.03 1.70 1.26 -0.45 0.17 
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PET_DRF+CF+PET_HRF 0.50 RR RFR 1.41 1.09 0.00 1.41 1.07 0.00 0.26 

PET_DRF+CF+PET_HRF 0.50 RR LRR 1.41 1.08 0.00 1.41 1.07 0.00 0.26 

PET_DRF+CF+PET_HRF 0.50 RR ADB 1.41 1.08 0.00 1.41 1.07 0.00 0.26 

PET_DRF+CF+PET_HRF 0.66 FR DTC 1.83 1.35 -0.67 2.26 1.60 -1.57 0.29 

PET_DRF+CF+PET_HRF 0.50 RR DTC 1.41 1.08 0.00 1.42 1.06 -0.01 0.33 

PET_DRF+CF+PET_HRF 0.50 RR KNN 1.41 1.08 0.00 1.42 1.05 -0.02 0.38 

PET_DRF+CF+PET_HRF 0.66 FR LRR 1.50 1.16 -0.13 1.65 1.20 -0.36 0.60 

PET_DRF+CF+PET_HRF 0.50 RR MLP 1.41 1.09 0.00 1.48 1.10 -0.11 0.69 

PET_DRF+CF+PET_HRF 0.66 FR KNN 1.52 1.18 -0.17 1.53 1.21 -0.17 0.75 

PET_DRF+CF+PET_HRF 0.66 FR SVR 1.42 1.07 -0.01 1.40 1.07 0.01 0.87 

PET_DRF+CF+PET_HRF 0.50 RR SVR 1.42 1.05 -0.02 1.42 1.05 -0.02  

PET_DRF+PET_HRF 0.50 RR RFR 1.41 1.09 0.00 1.41 1.07 0.00 0.26 

PET_DRF+PET_HRF 0.50 RR LRR 1.41 1.08 0.00 1.41 1.07 0.00 0.26 

PET_DRF+PET_HRF 0.50 RR ADB 1.41 1.08 0.00 1.41 1.07 0.00 0.26 

PET_DRF+PET_HRF 0.50 RR DTC 1.41 1.08 0.00 1.42 1.06 -0.01 0.33 

PET_DRF+PET_HRF 0.50 RR KNN 1.41 1.08 0.00 1.42 1.05 -0.02 0.38 

PET_DRF+PET_HRF 0.66 FR MLP 1.42 1.14 -0.02 1.44 1.18 -0.03 0.58 

PET_DRF+PET_HRF 0.50 RR MLP 1.41 1.09 0.00 1.48 1.10 -0.10 0.67 

PET_DRF+PET_HRF 0.66 FR LRR 1.51 1.15 -0.14 1.52 1.17 -0.17 0.71 
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PET_DRF+PET_HRF 0.66 FR ADB 1.46 1.13 -0.07 1.46 1.15 -0.07 0.75 

PET_DRF+PET_HRF 0.66 FR SVR 1.42 1.09 -0.01 1.41 1.08 0.00 0.79 

PET_DRF+PET_HRF 0.66 FR RFR 1.45 1.17 -0.06 1.53 1.18 -0.17 0.91 

PET_DRF+PET_HRF 0.66 FR KNN 1.47 1.14 -0.08 1.49 1.14 -0.11 0.95 

PET_DRF+PET_HRF 0.66 FR DTC 1.74 1.36 -0.53 2.69 1.37 -2.62 0.98 

PET_DRF+PET_HRF 0.50 RR SVR 1.42 1.05 -0.02 1.42 1.05 -0.02  

PET_HRF 0.63 FR MLP 2.17 1.79 -1.36 1.42 1.10 -0.02 0.00 

PET_HRF 0.63 FR ADB 1.57 1.20 -0.23 1.38 1.05 0.04 0.00 

PET_HRF 0.68 RR SVR 137.64 58.33 -9507.08 1.37 1.04 0.06 0.00 

PET_HRF 0.63 FR RFR 1.59 1.25 -0.27 1.47 1.13 -0.09 0.00 

PET_HRF 0.63 FR DTC 1.80 1.39 -0.63 1.51 1.11 -0.14 0.03 

PET_HRF 0.68 RR KNN 1.53 1.20 -0.18 1.43 1.07 -0.03 0.11 

PET_HRF 0.63 FR SVR 1.42 1.07 -0.01 1.39 1.05 0.03 0.22 

PET_HRF 0.63 FR LRR 1.48 1.13 -0.09 1.50 1.17 -0.12 0.43 

PET_HRF 0.63 FR KNN 1.52 1.16 -0.15 1.44 1.12 -0.04 0.52 

PET_HRF 0.68 RR RFR 1.58 1.23 -0.25 1.54 1.20 -0.18 0.66 

PET_HRF 0.68 RR DTC 1.70 1.29 -0.45 1.77 1.34 -0.57 0.70 

PET_HRF 0.63 RR ADB 1.52 1.14 -0.16 1.46 1.12 -0.08 0.71 

PET_HRF 0.68 RR LRR 1.50 1.14 -0.13 1.49 1.15 -0.12 0.75 
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PET_HRF 0.68 RR MLP 1.45 1.06 -0.06 1.37 1.08 0.06 0.85 

PET_HRF+CF 0.67 RR SVR 100.18 42.79 -5035.65 1.48 1.16 -0.10 0.00 

PET_HRF+CF 0.63 FR DTC 1.80 1.39 -0.63 1.45 1.08 -0.06 0.01 

PET_HRF+CF 0.63 FR RFR 1.58 1.23 -0.25 1.49 1.14 -0.11 0.04 

PET_HRF+CF 0.67 RR DTC 1.67 1.25 -0.40 2.07 1.57 -1.15 0.08 

PET_HRF+CF 0.67 RR MLP 1.42 1.11 -0.02 1.47 1.18 -0.09 0.24 

PET_HRF+CF 0.63 RR ADB 1.51 1.14 -0.15 1.45 1.11 -0.06 0.39 

PET_HRF+CF 0.63 FR KNN 1.51 1.14 -0.14 1.44 1.09 -0.04 0.40 

PET_HRF+CF 0.63 FR LRR 1.50 1.14 -0.13 1.43 1.10 -0.02 0.56 

PET_HRF+CF 0.63 FR SVR 1.42 1.06 -0.01 1.41 1.05 0.00 0.63 

PET_HRF+CF 0.63 FR MLP 1.41 1.05 0.00 1.43 1.07 -0.02 0.65 

PET_HRF+CF 0.67 RR KNN 1.53 1.20 -0.18 1.50 1.17 -0.12 0.71 

PET_HRF+CF 0.63 FR ADB 1.48 1.09 -0.10 1.46 1.10 -0.07 0.89 

PET_HRF+CF 0.67 RR RFR 1.56 1.21 -0.22 1.56 1.21 -0.23 0.96 

PET_HRF+CF 0.67 RR LRR 1.49 1.15 -0.12 1.52 1.15 -0.16 0.96 

HRF: handcrafted Radiomics features, DRF: deep Radiomics features, DRF_CT: DRFs extracted from segmented CT, DRF_PET: DRFs 

extracted from segmented PET, HRF_CT: HFRs extracted from segmented CT, HRF_PET: HFRs extracted from segmented PET, FFCV: Five-

Fold Cross-Validation, SSL: Semi-supervised Learning, SL: Supervised Learning, MAE: Mean Absolute Error, STD: Standard Deviation, ABR: 

AdaBoost Regressor, RFR: Random Forest Regressor, MLPR: Multi-Layer Perceptron Regressor, DTR: Decision Tree Regressor, LR: Linear 

Regression, SVR: Support Vector Machine Regressor, KNNR: K-Nearest Neighbor Regressor. 
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Supplemental Table S3. Top 10 features and parameters of top results 

Dataset FSA Algorit

hm 

SL_Top10_Features SL_BestP

arams 

SSL_Top10_Features SSL_Best

Params 

PET_HR

F 

FR ADB cm_joint_max_3D_comb (0.0890), 

szm_zsnu_norm_3D (0.0767), 

szm_szhge_3D (0.0078), 

cm_joint_max_3D_avg (0.0007), 

cm_energy_3D_comb (0.0000), 

szm_sze_3D (0.0000), 

cm_energy_3D_avg (0.0000), 

cm_joint_entr_3D_avg (0.0000), 

morph_geary_c (0.0000), morph_moran_i 

(0.0000) 

{'learning

_rate': 

0.1, 'loss': 

'linear', 

'n_estima

tors': 10} 

szm_szhge_3D (0.2486), 

cm_joint_max_3D_avg (0.0885), 

cm_energy_3D_comb (0.0670), 

cm_joint_max_3D_comb (0.0623), 

szm_zsnu_norm_3D (0.0515), 

szm_sze_3D (0.0502), morph_moran_i 

(0.0268), morph_geary_c (0.0157), 

cm_energy_3D_avg (0.0039), 

cm_joint_entr_3D_avg (0.0000) 

{'learning

_rate': 

0.01, 

'loss': 

'square', 

'n_estimat

ors': 10} 

CF RR ADB ageatdiagnosis (0.0761), FBase (0.0236), 

Wt_loss_c (0.0140), 

Correct_baseline_ECOG (0.0114), 

Fractionation_cat (0.0077), 

Met_no0_yes1 (0.0000), Sex (0.0000), 

Recurrence_status (0.0000), 

{'learning

_rate': 

0.1, 'loss': 

'square', 

'n_estima

tors': 10} 

Wt_loss_c (0.1122), ageatdiagnosis 

(0.1086), Correct_baseline_ECOG 

(0.0849), Sex (0.0697), Recurrence_status 

(0.0402), Met_no0_yes1 (0.0381), FBase 

(0.0198), Fractionation_cat (0.0156), 

{'learning

_rate': 

0.1, 'loss': 

'square', 

'n_estimat

ors': 10} 
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chemotherapy (0.0000), 

PostOpResidualTumourSx1 (0.0000) 

chemotherapy (0.0125), 

PostOpResidualTumourSx1 (0.0034) 

CT_DRF FR ADB 459 (0.6831), 505 (0.2896), 298 (0.0926), 

114 (0.0919), 456 (0.0292), 291 (0.0287), 

480 (0.0282), 427 (0.0098), 420 (0.0038), 

461 (0.0000) 

{'learning

_rate': 

0.01, 

'loss': 

'linear', 

'n_estima

tors': 10} 

298 (0.2403), 114 (0.1455), 480 (0.1076), 

427 (0.0481), 461 (0.0361), 459 (0.0192), 

291 (0.0107), 420 (0.0080), 505 (0.0000), 

456 (0.0000) 

{'learning

_rate': 

0.01, 

'loss': 

'linear', 

'n_estimat

ors': 10} 

PET_DR

F+CF 

FR RFR DF327 (0.6999), DF330 (0.6497), DF2 

(0.1416), DF816 (0.1125), DF586 

(0.0967), DF98 (0.0655), DF58 (0.0483), 

DF625 (0.0370), DF212 (0.0204), DF863 

(0.0106) 

{'max_de

pth': 5, 

'n_estima

tors': 

100} 

DF2 (0.2547), DF863 (0.2515), DF816 

(0.1715), DF58 (0.1071), DF98 (0.0538), 

DF330 (0.0140), DF327 (0.0086), DF212 

(0.0078), DF625 (0.0058), DF586 (0.0037) 

{'max_de

pth': 5, 

'n_estimat

ors': 50} 

CT+CF FR KNN Smoking Pack Years (0.3584), 

Smoking_cat (0.0179), dzm_sdlge_3D 

(0.0010), szm_lgze_3D (0.0004), 

morph_av (0.0000), ngl_lde_3D (0.0000), 

szm_szlge_3D (0.0000), dzm_lgze_3D 

{'algorith

m': 'auto', 

'n_neighb

ors': 7, 

Smoking Pack Years (0.2774), 

Smoking_cat (0.1100), ngl_lde_3D 

(0.0238), morph_av (0.0237), 

dzm_sdlge_3D (0.0054), szm_lgze_3D 

(0.0049), dzm_lgze_3D (0.0049), 

{'algorith

m': 'auto', 

'n_neighb

ors': 9, 
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(0.0000), ngl_dcnu_norm_3D (0.0000), 

ngl_ldlge_3D (0.0000) 

'weights': 

'uniform'} 

ngl_dcnu_norm_3D (0.0046), 

szm_szlge_3D (0.0029), ngl_ldlge_3D 

(0.0005) 

'weights': 

'uniform'} 

PET_DR

F 

FR ADB DF241 (0.1918), DF277 (0.1293), DF98 

(0.1013), DF58 (0.0814), DF863 

(0.0705), DF2 (0.0319), DF625 (0.0000), 

DF330 (0.0000), DF586 (0.0000), DF212 

(0.0000) 

{'learning

_rate': 

0.1, 'loss': 

'linear', 

'n_estima

tors': 10} 

DF2 (0.1790), DF863 (0.1503), DF277 

(0.1022), DF58 (0.0865), DF241 (0.0693), 

DF98 (0.0170), DF212 (0.0069), DF625 

(0.0000), DF586 (0.0000), DF330 (0.0000) 

{'learning

_rate': 

0.01, 

'loss': 

'linear', 

'n_estimat

ors': 10} 

CT FR ADB dzm_sdlge_3D (0.3624), morph_av 

(0.1769), cm_info_corr1_3D_avg 

(0.0956), stat_qcod (0.0897), 

dzm_lgze_3D (0.0175), ngl_hdhge_3D 

(0.0000), ngl_ldlge_3D (0.0000), 

szm_szlge_3D (0.0000), szm_lgze_3D 

(0.0000), cm_info_corr2_3D_avg 

(0.0000) 

{'learning

_rate': 

0.01, 

'loss': 

'square', 

'n_estima

tors': 10} 

szm_szlge_3D (0.1629), dzm_sdlge_3D 

(0.0894), ngl_ldlge_3D (0.0566), 

cm_info_corr1_3D_avg (0.0533), 

stat_qcod (0.0487), szm_lgze_3D (0.0201), 

morph_av (0.0199), 

cm_info_corr2_3D_avg (0.0051), 

ngl_hdhge_3D (0.0019), dzm_lgze_3D 

(0.0006) 

{'learning

_rate': 

0.01, 

'loss': 

'square', 

'n_estimat

ors': 10} 
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PET_DR

F+CF+P

ET_HRF 

RR KNN DF1020 (0.0000), DF1012 (0.0000), 

DF1006 (0.0000), DF1001 (0.0000), 

DF991 (0.0000), DF988 (0.0000), DF977 

(0.0000), DF965 (0.0000), DF948 

(0.0000), DF928 (0.0000) 

{'algorith

m': 

'ball_tree'

, 

'n_neighb

ors': 3, 

'weights': 

'uniform'} 

DF1020 (0.0000), DF1012 (0.0000), 

DF1006 (0.0000), DF1001 (0.0000), 

DF991 (0.0000), DF988 (0.0000), DF977 

(0.0000), DF965 (0.0000), DF948 

(0.0000), DF928 (0.0000) 

{'algorith

m': 'auto', 

'n_neighb

ors': 3, 

'weights': 

'uniform'} 

PET_DR

F+PET_

HRF 

RR KNN DF1020 (0.0000), DF1012 (0.0000), 

DF1006 (0.0000), DF1001 (0.0000), 

DF991 (0.0000), DF988 (0.0000), DF977 

(0.0000), DF965 (0.0000), DF948 

(0.0000), DF928 (0.0000) 

{'algorith

m': 

'ball_tree'

, 

'n_neighb

ors': 3, 

'weights': 

'uniform'} 

DF1020 (0.0000), DF1012 (0.0000), 

DF1006 (0.0000), DF1001 (0.0000), 

DF991 (0.0000), DF988 (0.0000), DF977 

(0.0000), DF965 (0.0000), DF948 

(0.0000), DF928 (0.0000) 

{'algorith

m': 'auto', 

'n_neighb

ors': 3, 

'weights': 

'uniform'} 

PET_HR

F+CF 

FR SVR szm_szhge_3D (0.1071), dzm_sdhge_3D 

(0.0399), Smoking_cat (0.0064), 

ngl_glnu_norm_3D (0.0000), 

{'C': 1, 

'degree': 

3, 

szm_szhge_3D (0.1343), dzm_sdhge_3D 

(0.1128), Smoking_cat (0.0064), 

morph_geary_c (0.0000), morph_moran_i 

{'C': 1, 

'degree': 
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cm_joint_max_3D_comb (0.0000), 

morph_geary_c (0.0000), 

cm_joint_max_3D_avg (0.0000), 

cm_energy_3D_comb (0.0000), 

cm_energy_3D_avg (0.0000), 

morph_moran_i (0.0000) 

'kernel': 

'rbf'} 

(0.0000), cm_joint_max_3D_comb 

(0.0000), cm_joint_max_3D_avg (0.0000), 

ngl_glnu_norm_3D (0.0000), 

cm_energy_3D_comb (0.0000), 

cm_energy_3D_avg (0.0000) 

3, 'kernel': 

'rbf'} 

CT_DRF

+CF 

FR ADB DF459 (0.2402), DF505 (0.1674), DF114 

(0.1316), DF456 (0.1215), DF480 

(0.0518), DF291 (0.0206), DF427 

(0.0192), DF420 (0.0190), DF461 

(0.0010), DF298 (0.0009) 

{'learning

_rate': 

0.1, 'loss': 

'linear', 

'n_estima

tors': 10} 

DF298 (0.2844), DF427 (0.1225), DF114 

(0.0941), DF480 (0.0779), DF505 

(0.0255), DF459 (0.0247), DF456 

(0.0002), DF461 (0.0000), DF420 

(0.0000), DF291 (0.0000) 

{'learning

_rate': 

0.1, 'loss': 

'linear', 

'n_estimat

ors': 10} 

CT_DRF

+CF+CT

_HRF 

FR ADB DF459 (0.1361), DF456 (0.1087), DF480 

(0.0974), DF291 (0.0683), DF461 

(0.0362), DF298 (0.0131), DF114 

(0.0097), DF427 (0.0083), DF420 

(0.0074), DF505 (0.0000) 

{'learning

_rate': 

0.01, 

'loss': 

'square', 

'n_estima

tors': 10} 

DF298 (0.2480), DF427 (0.1489), DF114 

(0.0636), DF459 (0.0429), DF480 

(0.0391), DF420 (0.0183), DF461 

(0.0161), DF291 (0.0157), DF456 

(0.0144), DF505 (0.0090) 

{'learning

_rate': 

0.01, 

'loss': 

'linear', 

'n_estimat

ors': 10} 
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CT_DRF

+CT_HR

F 

RR SVR DF1012 (0.0000), DF884 (0.0000), 

DF756 (0.0000), DF684 (0.0000), DF663 

(0.0000), DF628 (0.0000), DF535 

(0.0000), DF510 (0.0000), DF507 

(0.0000), DF505 (0.0000) 

{'C': 0.01, 

'degree': 

2, 

'kernel': 

'linear'} 

DF505 (0.1062), DF459 (0.0769), DF179 

(0.0707), DF684 (0.0631), DF510 

(0.0596), DF502 (0.0448), DF480 

(0.0446), DF473 (0.0445), DF246 

(0.0233), DF462 (0.0195) 

{'C': 1, 

'degree': 

2, 'kernel': 

'linear'} 

HRF: handcrafted Radiomics features, DRF: deep Radiomics features, DRF_CT: DRFs extracted from segmented CT, DRF_PET: DRFs 

extracted from segmented PET, HRF_CT: HFRs extracted from segmented CT, HRF_PET: HFRs extracted from segmented PET, FFCV: Five-

Fold Cross-Validation, SSL: Semi-supervised Learning, SL: Supervised Learning, MAE: Mean Absolute Error, STD: Standard Deviation, ABR: 

AdaBoost Regressor, RFR: Random Forest Regressor, SVR: Support Vector Machine Regressor, KNNR: K-Nearest Neighbor Regressor, FSA: 

Feature selection Algorithm, RR: r_regression, FR: f_regression. 

 

Supplemental Table S4. A list of the most important radiomics features used in this study, detailing their abbreviated names, full 

descriptions, and corresponding categories 

Abbreviation Complete Form Category Description 

ngt_strength_3D Neighbouring Grey Tone Difference 

Matrix (NGTDM) Strength 

Texture Measures the primitiveness of the texture. High 

strength means high contrast. 

ngt_coarseness_3D NGTDM Coarseness Texture Measures the spatial rate of change in intensity. 

Lower values mean "finer" texture. 
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dzm_sdhge_3D Dependent Zone Matrix (DZM) 

Small Dependence High Grey Level 

Emphasis 

Texture Measures the joint distribution of small dependence 

zones with high grey levels. 

dzm_zdnu_norm_3D DZM Zone Distance Non-

Uniformity Normalized 

Texture Measures the variability of zone distances in the 

image, normalized. 

dzm_hgze_3D DZM High Grey Level Zone 

Emphasis 

Texture Measures the distribution of high grey-level values. 

szm_szhge_3D Size Zone Matrix (SZM) Small Zone 

High Grey Level Emphasis 

Texture Measures the joint distribution of small size zones 

with high grey levels. 

szm_zsnu_norm_3D SZM Zone Size Non-Uniformity 

Normalized 

Texture Measures the variability of zone sizes in the image, 

normalized. 

szm_sze_3D SZM Small Zone Emphasis Texture Measures the distribution of small size zones. 

cm_joint_max_3D_avg Co-occurrence Matrix (GLCM) Joint 

Maximum 

Texture Measures the most predominant pair of neighbouring 

intensity values. 

cm_joint_entr_3D_avg Co-occurrence Matrix (GLCM) Joint 

Entropy 

Texture Measures the randomness/complexity of the intensity 

distribution. 

cm_energy_3D_avg Co-occurrence Matrix (GLCM) 

Energy 

Texture Measures the textural uniformity (also called Angular 

Second Moment). 
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ivh_diff_v10_v90 Intensity-Volume Histogram (IVH) 

Difference between V10 and V90 

Intensity The range of intensity values containing the central 

80% of the tumor volume. 

ivh_v10 IVH Intensity at 10th Volume 

Percentile 

Intensity The intensity level below which 10% of the tumor 

volume exists. 

morph_geary_c Morphological Geary's C Shape Measures spatial autocorrelation; how similar a voxel 

is to its neighbors. 

morph_av Morphological Feature (Average) Shape This is not a standard feature name. 'morph' refers to 

shape, and 'av' likely means an average of some 

property, but the specific feature is unclear. 

 

Supplemental Table S5. Hazard ratio survival analysis (HRSA) results 

Dataset PCA+ HRSA FFCV c-index ± 

STD 

FFCV p-

value 

External Test 

c-index 

External Test 

p-value 

CF CWGBSA 0.34±0.04 0 0.564 0.822 

CT_HRF CWGBSA 0.63±0.08 0.002 0.656 0.019 

CT_HRF+CF CWGBSA 0.63±0.08 0.002 0.653 0.118 

PET_HRF CWGBSA 0.66±0.06 0.001 0.549 0.239 

PET_HRF+CF CWGBSA 0.67±0.07 0 0.553 0.052 

S_CT_DRF CWGBSA 0.65±0.07 0.002 0.547 0.021 
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S_CT_DRF+CF CWGBSA 0.65±0.06 0.002 0.551 0.085 

S_CT_DRF+CT_HRF CWGBSA 0.66±0.06 0.003 0.598 0.632 

S_CT_DRF+CT_HRF+CF CWGBSA 0.66±0.06 0.002 0.598 0.632 

S_PET_DRF CWGBSA 0.63±0.06 0.001 0.46 0.611 

S_PET_DRF+CF CWGBSA 0.63±0.06 0.001 0.471 0.452 

S_PET_DRF+PET_HRF CWGBSA 0.65±0.06 0 0.538 0.921 

S_PET_DRF+PET_HRF+CF CWGBSA 0.65±0.06 0 0.533 0.755 

CF FSSVM 0.64±0.02 0.001 0.633 0.449 

CT_HRF FSSVM 0.64±0.08 0.007 0.582 0.182 

CT_HRF+CF FSSVM 0.65±0.08 0.003 0.598 0.141 

PET_HRF FSSVM 0.65±0.07 0 0.56 0.209 

PET_HRF+CF FSSVM 0.66±0.07 0 0.598 0.06 

S_CT_DRF FSSVM 0.62±0.04 0.007 0.529 0.178 

S_CT_DRF+CF FSSVM 0.62±0.04 0.018 0.527 0.178 

S_CT_DRF+CT_HRF FSSVM 0.66±0.05 0.001 0.578 0.238 

S_CT_DRF+CT_HRF+CF FSSVM 0.65±0.05 0.001 0.582 0.166 

S_PET_DRF FSSVM 0.60±0.06 0.02 0.482 0.021 

S_PET_DRF+CF FSSVM 0.6±0.05 0.012 0.48 0.01 

S_PET_DRF+PET_HRF FSSVM 0.65±0.07 0.002 0.553 0.115 
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S_PET_DRF+PET_HRF+CF FSSVM 0.65±0.06 0.002 0.553 0.115 

CF RSF 0.71±0.05 0 0.613 0.263 

CT_HRF RSF 0.62±0.05 0.052 0.521 0.742 

CT_HRF+CF RSF 0.64±0.12 0.001 0.523 0.886 

PET_HRF RSF 0.65±0.06 0.002 0.573 0.628 

PET_HRF+CF RSF 0.65±0.06 0 0.569 0.107 

S_CT_DRF RSF 0.61±0.05 0.014 0.553 0.075 

S_CT_DRF+CF RSF 0.61±0.02 0.025 0.556 0.027 

S_CT_DRF+CT_HRF RSF 0.66±0.05 0 0.632 0.585 

S_CT_DRF+CT_HRF+CF RSF 0.62±0.05 0.004 0.598 0.335 

S_PET_DRF RSF 0.59±0.03 0.229 0.509 0.068 

S_PET_DRF+CF RSF 0.58±0.05 0.021 0.513 0.371 

S_PET_DRF+PET_HRF RSF 0.63±0.06 0.02 0.587 0.207 

S_PET_DRF+PET_HRF+CF RSF 0.62±0.09 0.173 0.56 0.004 

HRF: handcrafted Radiomics features, DRF: deep Radiomics features, DRF_CT: DRFs extracted from segmented CT, DRF_PET: DRFs 

extracted from segmented PET, HRF_CT: HFRs extracted from segmented CT, HRF_PET: HFRs extracted from segmented PET, FSSVM: Fast 

Survival Support Vector Machines, CWGBSA: Component-wise Gradient Boosting Survival Analysis, RSF: Random Survival Forest, FFCV: 

Five-Fold Cross-Validation, HRSA: Hazard Ratio Survival Analysis. PCA: Principal Component Analysis.
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Supplemental Figure S2. Kaplan-Meier survival curves generated for Component-

wise Gradient Boosting Survival Analysis (CWGBSA) Results; SCT: Deep 

Radiomics Features extracted from CT, CT: Handcrafted Radiomics Features 

Extracted From CT, SPET: Deep Radiomics Features extracted from PET, PET: 

Handcrafted Radiomics Features Extracted From PET 
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Supplemental Figure S3. Kaplan-Meier survival curves generated for Fast Survival 

Support Vector Machines (FSSVM) Results; SCT: Deep Radiomics Features 

extracted from CT, CT: Handcrafted Radiomics Features Extracted From CT, SPET: 

Deep Radiomics Features extracted from PET, PET: Handcrafted Radiomics Features 

Extracted From PET 

 

 



33 

 

 

Supplemental Figure S4. Kaplan-Meier survival curves generated for Random 

Survival Forest (RSF) Results; SCT: Deep Radiomics Features extracted from CT, 

CT: Handcrafted Radiomics Features Extracted From CT, SPET: Deep Radiomics 

Features extracted from PET, PET: Handcrafted Radiomics Features Extracted From 

PET 
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