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Methods and Material
Supplemental Table S1. Clinical features description

Features Meaning
The types of surgery that patients have such as
Surgery category
‘pneumonectomy’, 'lobectomy’, 'segmentectomy
Ethnicity Tells the patient is Asian or not.
Postoperative residual  Explains post-operation residual tumor with 'Microscopic',
tumor ‘Macroscopic', and 'Not Applicable’ values
Primary tumour Describes Primary Tumour Resected in surgery with "Yes',
resected 'No’, and 'Not Applicable’ values
Radiation therapy Shows if a person has radiation therapy or not



mailto:msalman@bccrc.ca

Dose category
Histology
Stage at diagnose

Smoking category

Smoking Pack Years

weight loss category
Chemotherapy

Sex

Recurrence status

Metastasis

Correct baseline
ECOG

duration

Age at diagnosis

The total dose of radiotherapy

Describe the type of tumor Squamous cell carcinoma,
Adenocarcinoma etc.

Describes the cancer stage at diagnosis time

Describes three categories of smoking including current
smokers, former smokers, and non-smokers

The pack-year is a unit for measuring the amount a person
has smoked over a long period of time. It is calculated by
multiplying the number of packs of cigarettes smoked per
day by the number of years the person has smoked
Describe the amount of weight loss

Some patients have chemotherapy, and some others don't.
Male or Female

means that the cancer has come back in the same place it
first started.regional recurrence means that the cancer has
come back in the lymph nodes near the place it first started.
distant recurrence means the cancer has come back in
another part of the body; some distance from where it
started

Describes whether a patient has metastasis or not
Describes 0—Fully active, 1—Restricted in physically
strenuous activity but ambulatory and able to carry out
work of a light or sedentary nature, 2—Ambulatory and
capable of all self-care but unable to carry out any work
activities, 3—Capable of only limited self-care, 4—
Completely disabled, 5—Dead

Between the diagnosis date and Recurrence date
Describes the age at diagnosis

1.1.Image preprocessing and mask preparation
1.1.1. Attenuation correction (AC)
Attenuation correction (AC) is one of the most important corrections that need to be

performed in PET imaging. AC methods aim to account for the photon attenuation



1.1.2.

1.1.3.

along each line of response (LOR). For this purpose, maps of the linear attenuation
coefficients (LACs) for all the tissues and materials located in the PET field of view
are generated or integrals of these values along all the LORs are directly measured.
The procedure for including this information in the reconstruction (performing the

actual correction) is similar [1].

Standardized Uptake Value (SUV) correction

SUV is a quantitative measure used in PET imaging to supplement visual
interpretation of PET images. It is a ratio of tissue radioactivity concentration to
injected dose per unit body weight, normalized to the whole-body radioactivity
concentration. SUV is a semiquantitative measure, simpler to calculate than fully
quantitative measures like the influx constant K. It can be corrected for factors like

body weight, lean body mass, and body surface area [2].

Min/max normalization technique
Min-max normalization is a technique that transforms the values of a numerical
variable to a standard range, usually between 0 and 1. It is useful for comparing data
that have different scales or units of measurement. The formula for min-max
normalization is:

x' = (x — min) / (max — min)
where X is the original value, X' is the normalized value, min is the minimum value of
the variable, and max is the maximum value of the variable. This technique is also

known as feature scaling or rescaling [3, 4].

1.2.Feature extraction

1.2.1.

HRF Extraction

In our investigation, we utilized two distinct strategies for image feature extraction:
HRF and DRF. Within the HRF strategy, a total of 215 quantitative HRFs were
derived from each delineated tumor region using the PySERA standardization process
available in the VISERA software [5]. The radiomic feature generation process in
VISERA aligns with the protocols established by the Image Biomarker
Standardization Initiative (ISBI). The 215 HRFs encompassed a variety of feature
types: 29 shape descriptors, 20 first-order statistics (FO), 30 intensity histogram
parameters (IH), and 136 textural features. These textural features included 50 co-
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1.2.2.

occurrence matrix attributes (CMs), 32 run-length matrix characteristics (RLMs), 16
size zone metrics (SZMs), 16 distance zone parameters (DZMs), 5 neighborhood
gray-tone difference matrix elements (NGTSs), and 17 neighboring gray level
dependence matrix indices (NGLs). HRFs were extracted from the segmented PET

and CT images.

DRF Extraction
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Supplemental Figure S1. Structure of our autoencoder model. The Encoder includes
four convolutional layers, each followed by a batch normalization and a max-pooling
operation. The decoder path includes four convolutional layers that three of them are

followed by a batch normalization. F: Filters.

1.3.Pearson’s correlation coefficient regression (R_Regression)

Compute Pearson’s r for each feature and the target. Pearson’s r is also known as the
Pearson correlation coefficient. Linear model for testing the individual effect of each
of many regressors. This is a scoring function to be used in a feature selection
procedure, not a free-standing feature selection procedure. The cross-correlation

between each regressor and the target is computed as [6]:

E[(X[:, i] - mean(X[:, i])) * (y - mean(y))] / (std(X[:, i) * std(y))



1.4.F-test for regression (F_Regression)\
Univariate linear regression tests returning F-statistic and p-values. Quick linear
model for testing the effect of a single regressor, sequentially for many regressors.
This is done in 2 steps: The cross correlation between each regressor and the target is

computed using r_regression as:

E[(X[:, i] - mean(X[:, i])) * (y - mean(y))] / (std(X[:, i]) * std(y))

It is converted to an F score and then to a p-value. F_Regression is derived from
R_Regression and will rank features in the same order if all the features are positively

correlated with the target [7].

1.5.Principal Component Analysis (PCA)
PCA is a statistical unsupervised technique used in data analysis and Machine
Learning (ML) to simplify the complexity of high-dimensional data while retaining
most of the information. It works by identifying the directions, called principal
components, along which the variability of the data is maximized. These components
are orthogonal to each other and are derived from the eigenvectors of the data's
covariance matrix, ranked according to their eigenvalues. In this study, PCA reduces
the dimensionality by projecting the original data onto a smaller set of 10 significant

components to prevent overfitting in ML prediction algorithm [8].



1.6.WeilBull Accelerated failure time (AFT)
Accelerated failure time (AFT) models are used widely in medical research, though to
a much lesser extent than proportional hazards models. In an AFT model, the effect of
covariates act to accelerate or decelerate the time to event of interest, that is, shorten
or extend the time to event [9]. The Weibull model is a parametric survival model in
which the outcome is assumed to follow a Weibull distribution. A unique property of
the Weibull model is that when the accelerated failure time (AFT) assumption holds,
the proportional hazards (PH) assumption also holds, making it compatible with both
frameworks. In the PH formulation, the key assumption is that hazard ratios remain
constant over time, whereas in the AFT formulation, survival times are assumed to
accelerate or decelerate by a constant factor across covariate levels. This dual
property is specific to the Weibull model and makes it especially useful in survival

analysis [10].

1.7.Regression Algorithms (RA)

1.7.1. K-Nearest Neighbour
In supervised machine learning, the K-Nearest Neighbor (KNN) algorithm is a
straightforward yet powerful technique for regression and classification. It works on
the tenet that data points with comparable traits have a tendency to group together.
KNN finds the 'K' nearest points (neighbors) in the training data when a new data
point is added, and then assigns a value based on the average value for regression
tasks or the majority class for classification tasks. The algorithm's non-parametric
nature, which means it doesn't assume any particular distribution for the data points, is
one of its advantages. This makes it adaptable to a variety of datasets. The
performance of KNN is largely dependent on the value of 'K', the number of
neighbors considered. An ideal 'K' balances the model's bias and variance to prevent
overfitting or underfitting. Higher 'K' values produce more stable predictions because
they analyze more data points and are less sensitive to noise. However, this can result
in smoother decision boundaries, perhaps missing local nuances in the data. The
approach relies on an appropriate distance measure, such as Euclidean or Manhattan
distance, to locate the nearest neighbors [11].



1.7.2.

1.7.3.

AdaBoost Regressor (ABR)

Adaboost learning is a potent machine learning technique that enables the
construction of highly accurate prediction models through the combination of multiple
weak models. Adaboost, fundamentally, operates as an ensemble method wherein
decision trees are iteratively trained to rectify the errors introduced by the preceding
tree. By training each subsequent decision tree using the residuals of the previous tree,
the model is able to evolve and develop gradually. The ultimate prognosis is computed
by combining the predictions generated by each individual tree, assigning a weight to
its accuracy-based contribution. This procedure enables Adaboost to effortlessly
manage high-dimensional data and capture intricate interactions among features. In
addition, built-in regularisation in Adaboost ensures that the model generalises well to
new data and prevents overfitting. In general, Adaboost learning provides a resilient
and adaptable approach for constructing accurate prediction models, rendering it a
favoured option across an extensive variety of applications encompassing computer

vision, natural language processing, and other domains [12].

Random Forest Regressor (RFR)

A Random Forest Regressor is a form of machine learning model that predicts
continuous outcomes using a collection of decision trees. It is widely used in
regression problems that aim to predict a numerical value due to its capability of
managing complicated relationships among variables and delivering precise estimates
of uncertainty. Similar to other ensemble methods, a Random Forest Regressor
generates a final output by combining the predictions of multiple trees. A random
subset of the training data and features is used to train each tree, and the final
prediction is calculated by summing the outputs of all trees. The utilisation of
randomness in the feature and data selection processes serves to mitigate overfitting
and enhances the model's capacity to extrapolate to novel data. In addition, the model
is robust against outliers and can accommodate absent values. Applications such as
finance, marketing, and healthcare, where predicting continuous outcomes is crucial
and the model's ability to provide accurate estimates of uncertainty is valuable,

frequently employ Random Forest Regressors [13].



1.7.4.

1.7.5.

Multi-Layer Perceptron (MLPR)

For regression tasks, Multi-Layer Perceptron (MLP) regressors are a type of neural
network. An MLP regressor, as compared to a linear regression model that operates
under the assumption of a linear association between the input features and output
variables, employs multiple layers of artificial neurons to discover non-linear
relationships. An input layer, one or more concealed layers, and an output layer create
the model. Every hidden layer is composed of a specific group of neurons. In turn,
each neuron executes a computation on the inputs it receives from the previous layer
and subsequently transmits the result to the neurons in the following layer. The final
output is generated by applying an activation function to the output of the final hidden
layer. One notable benefit of MLP regressors is their capacity to identify intricate
patterns within datasets, which enables them to model non-linear associations
between inputs and outputs with remarkable accuracy. They are frequently
implemented in medical diagnosis, stock price prediction, and weather forecasting,
among other applications. Nevertheless, MLP regressors are susceptible to overfitting,
particularly when challenged with enormous datasets, and require precise

hyperparameter optimisation in order to attain peak performance [14].

Decision Tree Regressor (DTR)

A Decision Tree Regressor is a form of machine learning model that predicts
continuous outcomes using a tree-based structure. In contrast to the predefined
categories employed by a conventional decision tree, a decision tree regressor
generates predictions for continuous values, such as probabilities or prices. Based on
the values of the input features, the model recursively divides the data into smaller
subsets before fitting a statistical model, such as linear regression, to the data points
within each subset. In order to arrive at the ultimate prediction, the tree is traversed
from its root to each leaf node, where the predicted value is calculated using the
attributes linked to that specific leaf node. When the relationships between the input
features and the output variable are complex, decision tree regressors are beneficial,
they can process both numeric and categorical features. In addition to being
interpretable, which enables users to comprehend the methodology behind the model's
predictions, these models are also applicable to classification and regression tasks.

Nevertheless, decision tree regressors are susceptible to overfitting, which occurs



1.7.6.

1.7.7.

when the dataset contains an excessive number of irrelevant features; therefore, care

must be taken to select the proper features and adjust the model's parameters [15].

Linear Regression (LR)

In machine learning, linear regression is a widely implemented algorithm employed
for tasks involving the prediction of a continuous outcome variable from one or more
input features. Linear regression is a statistical method that models the relationship
between an output variable and input features through the use of a linear equation.
The coefficients of the features are acquired through training with the data. The model
operates under the assumption of a linear relationship between the output variable and
the features, whereby any change in a feature results in a constant effect on the output
variable, irrespective of the feature's level. As an algorithm for supervised learning,
Linear Regression requires labelled training data in order to discover the connection
between the input variable and the features. As a result of minimising the sum of
squared differences between the predicted and actual values, the algorithm determines
the linear equation that best describes the relationship between the output variable and
the features. Linear regression is an exceptionally potent instrument used across many
fields, including finance, economics, social sciences, and engineering, to predict
continuous outcomes. Additionally, it provides an excellent basis for comprehending
advanced algorithms in machine learning, including logistic regression and support

vector machines [16].

Support Vector Machine (SVR)

For regression tasks, Support Vector Machine (SVM) regression is a type of machine
learning algorithm. In contrast to conventional linear regression, which models the
relationship between independent and dependent variables using a linear function,
SVM regression maps inputs to outputs using a non-linear function. SVM regression
operates on the principle of locating the hyperplane that divides the data points into
distinct classes at the highest level possible. The objective of regression tasks is to
identify the hyperplane where the mean squared error between the predicted and
actual values is minimised. Support vector regression accomplishes this objective by
optimising the margin separating the hyperplane from the closest data points. As the
distance between the hyperplane and the support vectors, the margin signifies the

model's robustness. A greater margin indicates an enhanced capacity of the model to
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extrapolate to novel data. Support Vector Machine (SVM) regression proves to be
highly advantageous when confronted with chaotic or unstructured data. Its usage

extends across diverse domains, including finance, biology, and computer vision [17].

1.8.Hazard Ratio Survival Analysis (HRSA)

1.8.1.

1.8.2.

1.8.3.

Fast Survival Support Vector Machines (FSSVM)

An expansion of the regular Support Vector Machine to right-censored time-to-event
data is called a Survival Support Vector Machine. Its main benefit is that, with the use
of the so-called kernel trick, it can take into account intricate, non-linear correlations
between survival and attributes. The input features are implicitly mapped by a kernel
function into high-dimensional feature spaces where a hyperplane can describe
survival. Because of this, Survival Support Vector Machines may be applied to a large

variety of data and are highly versatile [18].

Component-wise Gradient Boosting Survival Analysis (CWGBSA)

Gradient Boosting is a flexible framework for optimizing a variety of loss functions
rather than a specific model. It builds a strong overall model by aggregating the
predictions of several base learners, according to the strength in numbers concept. The
base learners are sometimes known as weak learners since they are frequently
relatively basic models that perform slightly better than random guessing. The
predictions are combined additively, meaning that the addition of a base model

improves the model as a whole [19].

Random Survival Forest (RSF)

An ensemble of tree-based learners makes up a Random Survival Forest, just like its
well-known counterparts for regression and classification. By 1) generating each tree
using a unique bootstrap sample of the original training data and 2) only evaluating
the split criterion for a randomly chosen subset of features and thresholds at each
node, a Random Survival Forest ensures that individual trees are de-correlated. The
ensemble’s predictions are created by adding up the predictions of each individual tree
[20].
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1.9.Pseudo-labeling
Pseudo-labeling [21] is a technique for semi-supervised learning, which is a type of
ML that uses both labeled and unlabeled data. Pseudo-labeling works by using a
model trained on labeled data to predict the labels for unlabeled data, and then using
those “pseudo labels” to train the model in a supervised way on the unlabeled data.
This can help improve the accuracy and generalization of the model, especially when
there is not enough labeled data available. Of course, ultimately the performance of

such a framework is tested on a fully labeled dataset.
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2. Results

Supplemental Table S2. Results provided by regression algorithms (RA)

Dataset C- FSA Algorit  SL SL SLR2 SSL SSL SSL R2 T-test p-
Index hm RMSE MAE RMSE MAE value
CF 0.68 FR KNN 141 1.07 0.00 1.52 1.19 -0.17 0.00
CF 0.68 RR KNN 141 1.07 0.00 1.52 1.19 -0.17 0.00
CF 0.56 RR ADB 1.42 1.09 -0.02 1.39 1.04 0.03 0.05
CF 0.68 FR LRR 1.41 1.08 0.00 1.58 1.24 -0.25 0.13
CF 0.68 RR LRR 1.41 1.08 0.00 1.58 1.24 -0.25 0.13
CF 0.68 FR DTC 2.33 1.66 -1.73 1.79 1.37 -0.61 0.13
CF 0.68 RR DTC 2.33 1.66 -1.73 1.79 1.37 -0.61 0.13
CF 0.68 FR SVR 1.49 1.11 -0.11 1.53 1.21 -0.17 0.22
CF 0.68 RR SVR 1.49 1.11 -0.11 1.53 1.21 -0.17 0.22
CF 0.68 FR RFR 151 1.16 -0.14 154 1.21 -0.18 0.31
CF 0.68 RR RFR 151 1.16 -0.14 154 1.21 -0.18 0.31
CF 0.68 FR MLP 1.43 1.14 -0.02 1.53 1.21 -0.17 0.37
CF 0.68 RR MLP 1.43 1.15 -0.02 1.46 1.16 -0.07 0.84
CF 0.64 FR ADB 154 1.14 -0.19 1.47 1.13 -0.08 0.95
CT_DRF 0.70 FR RFR 1.58 1.20 -0.25 9.02 3.62 -39.80 0.04
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CT_DRF
CT_DRF
CT_DRF
CT_DRF
CT_DRF
CT DRF
CT DRF
CT_DRF
CT_DRF
CT DRF
CT DRF
CT_DRF
CT_DRF
CT_DRF+CF
CT_DRF+CF
CT_DRF+CF
CT_DRF+CF
CT_DRF+CF
CT_DRF+CF

0.70
0.65
0.50
0.70
0.70
0.70
0.70
0.50
0.50
0.50
0.50
0.50
0.50
0.65
0.65
0.50
0.50
0.65
0.65

FR
FR
RR
FR
FR
FR
FR
RR
RR
RR
RR
RR
RR
FR
FR
RR
RR
FR
FR

DTC
ADB
MLP
SVR
LRR

MLP
KNN
ADB
LRR

DTC
RFR

SVR
KNN
MLP
RFR

MLP
ADB
LRR

DTC

2.04
1.60
1.41
1.54
2.73
1.79
1.52
1.41
1.41
1.41
1.41
1.42
1.41
1.74
1.58
1.41
1.41
1.63
1.83

1.45
1.13
1.09
1.15
1.65
1.38
1.16
1.06
1.08
1.08
1.09
1.05
1.08
1.30
1.12
1.08
1.09
1.18
1.22

-1.08
-0.28
0.00
-0.19
-2.73
-0.60
-0.16
0.00
0.00
0.00
0.00
-0.02
0.00
-0.52
-0.25
0.00
0.00
-0.33
-0.67

8.79
1.49
1.55
15.32
17.98
14.82
7.90
1.41
1.49
1.43
1.47
1.44
1.50
1.60
1.52
1.52
1.41
1.62
1.69

3.71
1.03
1.18
4.81
5.23
4.62
2.62
1.09
1.10
1.07
1.07
1.06
1.08
1.13
1.06
1.15
1.07
1.12
1.13

-37.82
-0.12
-0.21
-116.84
-161.17
-109.19
-30.31
0.00
-0.11
-0.02
-0.08
-0.03
-0.12
-0.28
-0.16
-0.17
0.00
-0.32
-0.44

0.05
0.07
0.07
0.09
0.11
0.11
0.18
0.26
0.73
0.73
0.77
0.78
0.95
0.00
0.12
0.19
0.26
0.45
0.45
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CT_DRF+CF
CT_DRF+CF
CT_DRF+CF
CT_DRF+CF
CT_DRF+CF
CT_DRF+CF
CT_DRF+CF
CT_DRF+CF
CT_DRF+CF+CT_HRF
CT_DRF+CF+CT_HRF
CT_DRF+CF+CT_HRF
CT_DRF+CF+CT_HRF
CT_DRF+CF+CT_HRF
CT_DRF+CF+CT_HRF
CT_DRF+CF+CT_HRF
CT_DRF+CF+CT_HRF
CT_DRF+CF+CT_HRF
CT_DRF+CF+CT_HRF
CT_DRF+CF+CT_HRF

0.65
0.50
0.50
0.50
0.50
0.65
0.65
0.50
0.65
0.65
0.50
0.50
0.65
0.65
0.65
0.50
0.50
0.50
0.50

FR
RR
RR
RR
RR
FR
FR
RR
FR
FR
RR
RR
FR
FR
FR
RR
RR
RR
RR

ADB
LRR
DTC
RFR
SVR
SVR
KNN
KNN
MLP
RFR
ADB
MLP
LRR
DTC
ADB
LRR
DTC
RFR
SVR

1.49
1.41
1.41
1.41
1.42
1.46
1.50
1.41
1.80
1.58
1.41
1.41
1.63
1.83
1.46
1.41
1.41
1.41
1.42

1.04
1.08
1.08
1.09
1.05
1.08
1.10
1.08
1.31
1.12
1.08
1.09
1.18
1.22
1.04
1.08
1.08
1.09
1.05

-0.11
0.00
0.00
0.00
-0.02
-0.08
-0.12
0.00
-0.62
-0.25
0.00
0.00
-0.33
-0.67
-0.08
0.00
0.00
0.00
-0.02

1.54
1.49
1.43
1.47
1.44
1.53
1.54
1.50
1.56
1.52
1.41
1.49
1.62
1.69
1.45
1.49
1.43
1.47
1.44

1.07
1.10
1.07
1.07
1.06
1.09
1.09
1.08
1.12
1.06
1.07
1.13
1.12
1.13
1.02
1.10
1.07
1.07
1.06

-0.18
-0.11
-0.02
-0.08
-0.03
-0.17
-0.19
-0.12
-0.22
-0.16
0.00

-0.12
-0.32
-0.44
-0.05
-0.11
-0.02
-0.08
-0.03

0.65
0.73
0.73
0.77
0.78
0.86
0.91
0.95
0.02
0.12
0.26
0.35
0.45
0.45
0.65
0.73
0.73
0.77
0.78
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CT_DRF+CF+CT_HRF 0.65 FR SVR 1.46 1.08 -0.08 1.53 1.09 -0.17 0.86

CT_DRF+CF+CT_HRF 0.65 FR KNN 1.50 1.10 -0.12 1.54 1.09 -0.19 0.91
CT_DRF+CF+CT_HRF 0.50 RR KNN 1.41 1.08 0.00 1.50 1.08 -0.12 0.95
CT_DRF+CT_HRF 0.65 FR MLP 1.76 1.30 -0.56 1.56 1.12 -0.22 0.03
CT_DRF+CT_HRF 0.65 FR RFR 1.58 1.12 -0.25 1.52 1.06 -0.16 0.12
CT_DRF+CT_HRF 0.50 RR MLP 1.41 1.08 0.00 1.53 1.15 -0.18 0.13
CT_DRF+CT_HRF 0.50 RR ADB 1.41 1.08 0.00 1.41 1.07 0.00 0.26
CT_DRF+CT_HRF 0.65 FR LRR 1.63 1.18 -0.33 1.62 1.12 -0.32 0.45
CT_DRF+CT_HRF 0.65 FR DTC 1.83 1.22 -0.67 1.69 1.13 -0.44 0.45
CT_DRF+CT_HRF 0.50 RR LRR 1.41 1.08 0.00 1.49 1.10 -0.11 0.73
CT_DRF+CT_HRF 0.50 RR DTC 1.41 1.08 0.00 1.43 1.07 -0.02 0.73
CT_DRF+CT_HRF 0.50 RR RFR 1.41 1.09 0.00 1.47 1.07 -0.08 0.77
CT_DRF+CT_HRF 0.50 RR SVR 1.42 1.05 -0.02 1.44 1.06 -0.03 0.78
CT_DRF+CT_HRF 0.65 FR ADB 1.60 1.12 -0.28 1.57 1.11 -0.24 0.85
CT_DRF+CT_HRF 0.65 FR SVR 1.46 1.08 -0.08 1.53 1.09 -0.17 0.86
CT_DRF+CT_HRF 0.65 FR KNN 1.50 1.10 -0.12 1.54 1.09 -0.19 0.91
CT_DRF+CT_HRF 0.50 RR KNN 1.41 1.08 0.00 1.50 1.08 -0.12 0.95
CT_HRF 0.74 RR KNN 1.41 1.09 0.00 1.49 1.21 -0.11 0.12
CT_HRF 0.61 FR LRR 1.50 1.10 -0.13 1.47 1.05 -0.08 0.14
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CT_HRF
CT_HRF
CT_HRF
CT_HRF
CT_HRF
CT_HRF
CT_HRF
CT_HRF
CT_HRF
CT_HRF
CT_HRF
CT_HRF
CT_HRF+CF
CT_HRF+CF
CT_HRF+CF
CT_HRF+CF
CT_HRF+CF
CT_HRF+CF
CT_HRF+CF

0.74
0.74
0.59
0.61
0.61
0.74
0.61
0.61
0.61
0.74
0.74
0.61
0.74
0.64
0.74
0.74
0.64
0.74
0.64

RR
RR
RR
FR
FR
RR
FR
FR
FR
RR
RR
FR
RR
FR
RR
RR
FR
RR
FR

SVR
LRR
ADB
DTC
ADB
DTC
MLP
RFR

KNN
MLP
RFR

SVR
LRR

MLP
SVR
KNN
KNN
RFR

ADB

1.77
1.45
1.50
1.71
1.41
1.47
1.50
1.48
1.50
151
1.54
1.45
1.46
1.48
1.52
1.41
1.44
1.56
1.55

1.41
1.10
1.13
1.28
1.02
1.10
1.11
1.08
1.18
1.12
1.21
1.07
1.15
1.17
1.11
1.09
1.11
1.22
1.17

-0.58
-0.06
-0.12
-0.47
0.01

-0.08
-0.12
-0.11
-0.12
-0.14
-0.20
-0.06
-0.06
-0.11
-0.16
0.00

-0.05
-0.22
-0.21

1.62
1.60
1.43
1.62
1.47
1.55
1.42
1.54
1.50
1.46
1.58
1.46
1.86
2.27
1.77
1.61
1.39
1.81
1.49

1.24
1.20
1.08
1.16
1.08
1.20
1.06
1.13
1.14
1.15
1.19
1.07
1.50
1.76
1.41
1.25
1.02
1.40
1.08

-0.31
-0.29
-0.03
-0.31
-0.08
-0.20
-0.01
-0.19
-0.13
-0.07
-0.25
-0.07
-0.74
-1.59
-0.57
-0.30
0.04

-0.64
-0.11

0.24
0.27
0.28
0.34
0.34
0.37
0.37
0.43
0.60
0.67
0.77
0.89
0.00
0.01
0.02
0.09
0.09
0.19
0.20
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CT_HRF+CF
CT_HRF+CF
CT_HRF+CF
CT_HRF+CF
CT_HRF+CF
CT_HRF+CF
CT_HRF+CF
PET_DRF
PET_DRF
PET_DRF
PET_DRF
PET_DRF
PET_DRF
PET_DRF
PET_DRF
PET_DRF
PET_DRF
PET_DRF
PET_DRF

0.64
0.74
0.64
0.64
0.64
0.74
0.59
0.66
0.66
0.50
0.50
0.50
0.66
0.66
0.50
0.66
0.50
0.66
0.66

FR
RR
FR
FR
FR
RR
RR
FR
FR
RR
RR
RR
FR
FR
RR
FR
RR
FR
FR

SVR
MLP
DTC
LRR
RFR
DTC
ADB
RFR
SVR
RFR
LRR
ADB
KNN
ADB
DTC
DTC
KNN
MLP
LRR

1.43
1.45
1.57
1.50
1.46
1.69
1.47
1.32
1.43
1.41
1.41
1.41
1.46
1.33
1.41
1.59
1.41
1.45
1.49

1.06
1.12
1.15
1.10
1.08
1.34
1.10
1.02
1.07
1.09
1.08
1.08
1.12
1.01
1.08
1.13
1.08
1.14
1.09

-0.03
-0.05
-0.23
-0.13
-0.06
-0.44
-0.08
0.12
-0.02
0.00
0.00
0.00
-0.07
0.11
0.00
-0.27
0.00
-0.06
-0.11

1.42
1.49
1.46
1.48
1.49
2.00
1.46
1.73
1.49
1.41
1.41
1.41
1.62
1.71
1.42
1.96
1.42
1.41
1.59

1.05
1.20
1.08
1.08
1.07
1.36
1.10
1.23
1.13
1.07
1.07
1.07
1.20
1.14
1.06
1.31
1.05
1.08
1.14

-0.01
-0.11
-0.07
-0.09
-0.12
-1.01
-0.08
-0.50
-0.11
0.00

0.00

0.00

-0.32
-0.47
-0.01
-0.93
-0.02
0.01

-0.27

0.24
0.29
0.45
0.68
0.92
0.92
0.96
0.04
0.14
0.26
0.26
0.26
0.30
0.31
0.33
0.34
0.38
0.54
0.54
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PET_DRF
PET_DRF

PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF
PET_DRF+CF

PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF

0.50
0.50
0.67
0.67
0.50
0.50
0.50
0.67
0.50
0.67
0.50
0.67
0.67
0.50
0.67
0.50
0.66
0.66
0.66

RR
RR
FR
FR
RR
RR
RR
FR
RR
FR
RR
FR
FR
RR
FR
RR
FR
FR
FR

MLP
SVR
RFR
SVR
ADB
RFR
LRR
DTC
DTC
MLP
KNN
ADB
LRR
MLP
KNN
SVR
MLP
ADB
RFR

1.41
1.42
1.32
1.43
1.42
1.41
1.41
1.57
1.41
1.48
1.41
1.36
1.48
1.41
1.46
1.42
1.49
1.51
1.43

1.09
1.05
1.02
1.07
1.10
1.09
1.08
1.11
1.08
1.20
1.08
1.03
1.09
1.09
1.12
1.05
1.21
1.12
1.12

0.00
-0.02
0.13
-0.02
-0.01
0.00
0.00
-0.24
0.00
-0.11
0.00
0.07
-0.10
0.00
-0.06
-0.02
-0.12
-0.14
-0.03

1.48
1.42
1.59
1.49
1.41
1.41
1.41
1.83
1.42
1.40
1.42
1.56
1.57
1.49
1.50
1.42
2.98
1.90
1.70

1.10
1.05
1.17
1.12
1.06
1.07
1.07
1.28
1.06
1.10
1.05
1.12
1.12
1.10
1.13
1.05
2.55
1.36
1.26

-0.09
-0.02
-0.27
-0.11
0.00

0.00

0.00

-0.68
-0.01
0.02

-0.02
-0.21
-0.24
-0.12
-0.13
-0.02
-3.45
-0.82
-0.45

0.74

0.08
0.22
0.26
0.26
0.26
0.31
0.33
0.36
0.38
0.49
0.50
0.63
0.81

0.00
0.07
0.17




PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+CF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF

0.50
0.50
0.50
0.66
0.50
0.50
0.66
0.50
0.66
0.66
0.50
0.50
0.50
0.50
0.50
0.50
0.66
0.50
0.66

RR
RR
RR
FR
RR
RR
FR
RR
FR
FR
RR
RR
RR
RR
RR
RR
FR
RR
FR

RFR
LRR
ADB
DTC
DTC
KNN
LRR
MLP
KNN
SVR
SVR
RFR
LRR
ADB
DTC
KNN
MLP
MLP
LRR

1.41
1.41
1.41
1.83
1.41
1.41
1.50
1.41
1.52
1.42
1.42
1.41
1.41
1.41
1.41
1.41
1.42
1.41
1.51

1.09
1.08
1.08
1.35
1.08
1.08
1.16
1.09
1.18
1.07
1.05
1.09
1.08
1.08
1.08
1.08
1.14
1.09
1.15

0.00
0.00
0.00
-0.67
0.00
0.00
-0.13
0.00
-0.17
-0.01
-0.02
0.00
0.00
0.00
0.00
0.00
-0.02
0.00
-0.14

1.41
1.41
1.41
2.26
1.42
1.42
1.65
1.48
1.53
1.40
1.42
1.41
1.41
1.41
1.42
1.42
1.44
1.48
1.52

1.07
1.07
1.07
1.60
1.06
1.05
1.20
1.10
1.21
1.07
1.05
1.07
1.07
1.07
1.06
1.05
1.18
1.10
1.17

0.00
0.00
0.00
-1.57
-0.01
-0.02
-0.36
-0.11
-0.17
0.01
-0.02
0.00
0.00
0.00
-0.01
-0.02
-0.03
-0.10
-0.17

0.26
0.26
0.26
0.29
0.33
0.38
0.60
0.69
0.75
0.87

0.26
0.26
0.26
0.33
0.38
0.58
0.67
0.71
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PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_DRF+PET_HRF
PET_HRF
PET_HRF
PET_HRF
PET_HRF
PET_HRF
PET_HRF
PET_HRF
PET_HRF
PET_HRF
PET_HRF
PET_HRF
PET_HRF
PET_HRF

0.66
0.66
0.66
0.66
0.66
0.50
0.63
0.63
0.68
0.63
0.63
0.68
0.63
0.63
0.63
0.68
0.68
0.63
0.68

FR
FR
FR
FR
FR
RR
FR
FR
RR
FR
FR
RR
FR
FR
FR
RR
RR
RR
RR

ADB
SVR
RFR
KNN
DTC
SVR
MLP
ADB
SVR
RFR
DTC
KNN
SVR
LRR
KNN
RFR
DTC
ADB
LRR

1.46
1.42
1.45
1.47
1.74
1.42
2.17
1.57
137.64
1.59
1.80
1.53
1.42
1.48
1.52
1.58
1.70
1.52
1.50

1.13
1.09
1.17
1.14
1.36
1.05
1.79
1.20
58.33
1.25
1.39
1.20
1.07
1.13
1.16
1.23
1.29
1.14
1.14

-0.07
-0.01
-0.06
-0.08
-0.53
-0.02
-1.36
-0.23
-9507.08
-0.27
-0.63
-0.18
-0.01
-0.09
-0.15
-0.25
-0.45
-0.16
-0.13

1.46
1.41
1.53
1.49
2.69
1.42
1.42
1.38
1.37
1.47
151
1.43
1.39
1.50
1.44
1.54
1.77
1.46
1.49

1.15
1.08
1.18
1.14
1.37
1.05
1.10
1.05
1.04
1.13
1.11
1.07
1.05
1.17
1.12
1.20
1.34
1.12
1.15

-0.07
0.00

-0.17
-0.11
-2.62
-0.02
-0.02
0.04

0.06

-0.09
-0.14
-0.03
0.03

-0.12
-0.04
-0.18
-0.57
-0.08
-0.12

0.75
0.79
0.91
0.95
0.98

0.00
0.00
0.00
0.00
0.03
0.11
0.22
0.43
0.52
0.66
0.70
0.71
0.75
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PET_HRF 0.68 RR MLP 1.45 1.06 -0.06 1.37 1.08 0.06 0.85

PET_HRF+CF 0.67 RR SVR 100.18 42,79  -5035.65 1.48 1.16 -0.10 0.00
PET_HRF+CF 0.63 FR DTC 1.80 1.39 -0.63 1.45 1.08 -0.06 0.01
PET_HRF+CF 0.63 FR RFR 1.58 1.23 -0.25 1.49 1.14 -0.11 0.04
PET_HRF+CF 0.67 RR DTC 1.67 1.25 -0.40 2.07 1.57 -1.15 0.08
PET_HRF+CF 0.67 RR MLP 1.42 1.11 -0.02 1.47 1.18 -0.09 0.24
PET_HRF+CF 0.63 RR ADB 1.51 1.14 -0.15 1.45 1.11 -0.06 0.39
PET_HRF+CF 0.63 FR KNN 1.51 1.14 -0.14 1.44 1.09 -0.04 0.40
PET_HRF+CF 0.63 FR LRR 1.50 1.14 -0.13 1.43 1.10 -0.02 0.56
PET_HRF+CF 0.63 FR SVR 1.42 1.06 -0.01 1.41 1.05 0.00 0.63
PET_HRF+CF 0.63 FR MLP 1.41 1.05 0.00 1.43 1.07 -0.02 0.65
PET_HRF+CF 0.67 RR KNN 1.53 1.20 -0.18 1.50 1.17 -0.12 0.71
PET_HRF+CF 0.63 FR ADB 1.48 1.09 -0.10 1.46 1.10 -0.07 0.89
PET_HRF+CF 0.67 RR RFR 1.56 1.21 -0.22 1.56 1.21 -0.23 0.96
PET_HRF+CF 0.67 RR LRR 1.49 1.15 -0.12 1.52 1.15 -0.16 0.96

HRF: handcrafted Radiomics features, DRF: deep Radiomics features, DRF_CT: DRFs extracted from segmented CT, DRF_PET: DRFs
extracted from segmented PET, HRF_CT: HFRs extracted from segmented CT, HRF_PET: HFRs extracted from segmented PET, FFCV: Five-
Fold Cross-Validation, SSL: Semi-supervised Learning, SL: Supervised Learning, MAE: Mean Absolute Error, STD: Standard Deviation, ABR:
AdaBoost Regressor, RFR: Random Forest Regressor, MLPR: Multi-Layer Perceptron Regressor, DTR: Decision Tree Regressor, LR: Linear

Regression, SVR: Support Vector Machine Regressor, KNNR: K-Nearest Neighbor Regressor.
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Supplemental Table S3. Top 10 features and parameters of top results

Dataset FSA Algorit SL_ToplO_Features SL_BestP SSL_Topl0_Features SSL_Best
hm arams Params

PET HR FR ADB cm_joint_max_3D_comb (0.0890), {'learning szm_szhge 3D (0.2486), {’learning

F szm_zsnu_norm_3D (0.0767), _rate”: cm_joint_max_3D_avg (0.0885), _rate”:
szm_szhge 3D (0.0078), 0.1, 'loss": cm_energy_3D_comb (0.0670), 0.01,
cm_joint_max_3D_avg (0.0007), 'linear', cm_joint_max_3D_comb (0.0623), "loss':
cm_energy_3D_comb (0.0000), 'n_estima szm_zsnu_norm_3D (0.0515), 'square’,
szm_sze 3D (0.0000), tors: 10} szm_sze 3D (0.0502), morph_moran_i 'n_estimat
cm_energy_3D_avg (0.0000), (0.0268), morph_geary_c (0.0157), ors": 10}
cm_joint_entr_3D_avg (0.0000), cm_energy_3D_avg (0.0039),
morph_geary_c (0.0000), morph_moran_i cm_joint_entr_3D_avg (0.0000)
(0.0000)

CF RR ADB ageatdiagnosis (0.0761), FBase (0.0236), {'learning Wt _loss_c (0.1122), ageatdiagnosis {'learning
Wt _loss_c (0.0140), _rate”. (0.1086), Correct_baseline ECOG _rate”:
Correct_baseline_ ECOG (0.0114), 0.1, 'loss":  (0.0849), Sex (0.0697), Recurrence_status 0.1, 'loss'":
Fractionation_cat (0.0077), 'square’, (0.0402), Met_no0_yesl1 (0.0381), FBase  'square’,
Met_no0_yes1 (0.0000), Sex (0.0000), 'n_estima  (0.0198), Fractionation_cat (0.0156), 'n_estimat
Recurrence_status (0.0000), tors": 10} ors: 10}
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CT _DRF

PET DR
F+CF

CT+CF

FR

FR

FR

ADB

RFR

KNN

chemotherapy (0.0000),
PostOpResidual TumourSx1 (0.0000)

459 (0.6831), 505 (0.2896), 298 (0.0926),
114 (0.0919), 456 (0.0292), 291 (0.0287),
480 (0.0282), 427 (0.0098), 420 (0.0038),

461 (0.0000)

DF327 (0.6999), DF330 (0.6497), DF2
(0.1416), DF816 (0.1125), DF586

(0.0967), DF98 (0.0655), DF58 (0.0483),
DF625 (0.0370), DF212 (0.0204), DF863

(0.0106)

Smoking Pack Years (0.3584),
Smoking_cat (0.0179), dzm_sdige 3D
(0.0010), szm_lgze_3D (0.0004),

morph_av (0.0000), ngl_Ide_3D (0.0000),

szm_szlge_3D (0.0000), dzm_lgze 3D

{'learning
_rate".
0.01,
loss":
'linear’,
'n_estima
tors': 10}
{'max_de
pth': 5,
'n_estima
tors":
100}
{'algorith
m': ‘auto’,
'n_neighb

ors': 7,

chemotherapy (0.0125),

PostOpResidual TumourSx1 (0.0034)

298 (0.2403), 114 (0.1455), 480 (0.1076),
427 (0.0481), 461 (0.0361), 459 (0.0192),
291 (0.0107), 420 (0.0080), 505 (0.0000),
456 (0.0000)

DF2 (0.2547), DF863 (0.2515), DF816
(0.1715), DF58 (0.1071), DF98 (0.0538),
DF330 (0.0140), DF327 (0.0086), DF212
(0.0078), DF625 (0.0058), DF586 (0.0037)

Smoking Pack Years (0.2774),
Smoking_cat (0.1100), ngl_lde_3D
(0.0238), morph_av (0.0237),
dzm_sdlge 3D (0.0054), szm_lgze_3D
(0.0049), dzm_lgze_3D (0.0049),

{'learning
_rate":
0.01,
loss":
'linear’,
'n_estimat
ors": 10}
{'max_de
pth': 5,
'n_estimat
ors": 50}

{'algorith
m': ‘auto’,
'n_neighb

ors": 9,
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PET_DR
F

CT

FR

FR

ADB

ADB

(0.0000), ngl_dcnu_norm_3D (0.0000),
ngl_ldlge_3D (0.0000)

DF241 (0.1918), DF277 (0.1293), DF98
(0.1013), DF58 (0.0814), DF863

(0.0705), DF2 (0.0319), DF625 (0.0000),
DF330 (0.0000), DF586 (0.0000), DF212

(0.0000)

dzm_sdlge 3D (0.3624), morph_av
(0.1769), cm_info_corrl 3D _avg
(0.0956), stat_qcod (0.0897),
dzm_lgze_3D (0.0175), ngl_hdhge 3D
(0.0000), ngl_Idige_3D (0.0000),
szm_szlge 3D (0.0000), szm_Igze 3D
(0.0000), cm_info_corr2_3D_avg
(0.0000)

'weights':

‘uniform'}

{’learning
_rate":
0.1, 'loss":
'linear’,
'n_estima
tors': 10}

{'learning
_rate":
0.01,
loss":
'square’,
'n_estima
tors': 10}

ngl_dcnu_norm_3D (0.0046),
szm_szlge_3D (0.0029), ngl_ldlge_3D
(0.0005)

DF2 (0.1790), DF863 (0.1503), DF277
(0.1022), DF58 (0.0865), DF241 (0.0693),
DF98 (0.0170), DF212 (0.0069), DF625
(0.0000), DF586 (0.0000), DF330 (0.0000)

szm_szlge_3D (0.1629), dzm_sdlge 3D
(0.0894), ngl_Idlge_3D (0.0566),
cm_info_corrl_3D_avg (0.0533),
stat_qcod (0.0487), szm_Igze_3D (0.0201),
morph_av (0.0199),
cm_info_corr2_3D_avg (0.0051),
ngl_hdhge 3D (0.0019), dzm_lgze 3D
(0.0006)

‘weights":

‘uniform'}

{’learning
_rate".
0.01,
loss":
‘linear’,
'n_estimat
ors": 10}
{'learning
_rate":
0.01,
loss":
'square’,
'n_estimat
ors": 10}
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PET DR RR
F+CF+P
ET_HRF

KNN

PET_ DR RR
F+PET_
HRF

KNN

PET_HR FR SVR

F+CF

DF1020 (0.0000), DF1012 (0.0000),
DF1006 (0.0000), DF1001 (0.0000),
DF991 (0.0000), DF988 (0.0000), DF977
(0.0000), DF965 (0.0000), DF948
(0.0000), DF928 (0.0000)

DF1020 (0.0000), DF1012 (0.0000),
DF1006 (0.0000), DF1001 (0.0000),
DF991 (0.0000), DF988 (0.0000), DF977
(0.0000), DF965 (0.0000), DF948
(0.0000), DF928 (0.0000)

szm_szhge 3D (0.1071), dzm_sdhge 3D
(0.0399), Smoking_cat (0.0064),
ngl_ginu_norm_3D (0.0000),

{'algorith
m'
‘ball_tree'
'n_neighb
ors': 3,
'weights":
‘uniform'}
{'algorith
m'
‘ball_tree'
'n_neighb
ors': 3,
'weights':
‘uniform'}
{C"1,
'degree”:
3,

DF1020 (0.0000), DF1012 (0.0000),
DF1006 (0.0000), DF1001 (0.0000),
DF991 (0.0000), DF988 (0.0000), DF977
(0.0000), DF965 (0.0000), DF948
(0.0000), DF928 (0.0000)

DF1020 (0.0000), DF1012 (0.0000),
DF1006 (0.0000), DF1001 (0.0000),
DF991 (0.0000), DF988 (0.0000), DF977
(0.0000), DF965 (0.0000), DF948
(0.0000), DF928 (0.0000)

szm_szhge 3D (0.1343), dzm_sdhge 3D
(0.1128), Smoking_cat (0.0064),
morph_geary_c (0.0000), morph_moran_i

{'algorith
m': ‘auto’,
'n_neighb
ors" 3,

‘weights":

‘uniform'}

{'algorith
m': ‘auto’,
'n_neighb
ors'" 3,

‘weights":

‘uniform’}

{c1,

'degree"”:
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CT_DRF
+CF

CT_DRF
+CF+CT
_HRF

FR

FR

ADB

ADB

cm_joint_max_3D_comb (0.0000),
morph_geary_c (0.0000),
cm_joint_max_3D_avg (0.0000),
cm_energy_3D_comb (0.0000),
cm_energy_3D_avg (0.0000),
morph_moran_i (0.0000)

DF459 (0.2402), DF505 (0.1674), DF114

(0.1316), DF456 (0.1215), DF480
(0.0518), DF291 (0.0206), DF427
(0.0192), DF420 (0.0190), DF461
(0.0010), DF298 (0.0009)

DF459 (0.1361), DF456 (0.1087), DF480

(0.0974), DF291 (0.0683), DF461
(0.0362), DF298 (0.0131), DF114
(0.0097), DF427 (0.0083), DF420
(0.0074), DF505 (0.0000)

'kernel':
'rbf'}

{'learning
_rate".
0.1, 'loss":
'linear’,
'n_estima
tors': 10}
{'learning
_rate":
0.01,
loss":
'square’,
'n_estima
tors": 10}

(0.0000), cm_joint_max_3D_comb
(0.0000), cm_joint_max_3D_avg (0.0000),
ngl_glnu_norm_3D (0.0000),
cm_energy_3D_comb (0.0000),
cm_energy_3D_avg (0.0000)

DF298 (0.2844), DF427 (0.1225), DF114
(0.0941), DF480 (0.0779), DF505
(0.0255), DF459 (0.0247), DF456
(0.0002), DF461 (0.0000), DF420
(0.0000), DF291 (0.0000)

DF298 (0.2480), DF427 (0.1489), DF114
(0.0636), DF459 (0.0429), DF480
(0.0391), DF420 (0.0183), DF461
(0.0161), DF291 (0.0157), DF456
(0.0144), DF505 (0.0090)

3, 'kernel":
'rbf'}

{'learning

_rate".

0.1, 'loss":
'linear’,
'n_estimat
ors": 10}

{'learning

_rate":

0.01,
loss":
‘linear’,
'n_estimat
ors: 10}

25



CT DRF RR SVR  DF1012 (0.0000), DF884 (0.0000), {C 001, DF505 (0.1062), DF459 (0.0769), DF179  {C" 1,

+CT_HR DF756 (0.0000), DF684 (0.0000), DF663  'degree”:  (0.0707), DF684 (0.0631), DF510 ‘degree":

F (0.0000), DF628 (0.0000), DF535 2, (0.0596), DF502 (0.0448), DF480 2, 'kernel’;
(0.0000), DF510 (0.0000), DF507 'kernel:  (0.0446), DF473 (0.0445), DF246 'linear’}
(0.0000), DF505 (0.0000) linear}  (0.0233), DF462 (0.0195)

HRF: handcrafted Radiomics features, DRF: deep Radiomics features, DRF_CT: DRFs extracted from segmented CT, DRF_PET: DRFs
extracted from segmented PET, HRF_CT: HFRs extracted from segmented CT, HRF_PET: HFRs extracted from segmented PET, FFCV: Five-
Fold Cross-Validation, SSL: Semi-supervised Learning, SL: Supervised Learning, MAE: Mean Absolute Error, STD: Standard Deviation, ABR:
AdaBoost Regressor, RFR: Random Forest Regressor, SVR: Support Vector Machine Regressor, KNNR: K-Nearest Neighbor Regressor, FSA:

Feature selection Algorithm, RR: r_regression, FR: f_regression.

Supplemental Table S4. A list of the most important radiomics features used in this study, detailing their abbreviated names, full

descriptions, and corresponding categories

Abbreviation Complete Form Category Description

ngt_strength_3D Neighbouring Grey Tone Difference  Texture Measures the primitiveness of the texture. High
Matrix (NGTDM) Strength strength means high contrast.

ngt_coarseness_3D NGTDM Coarseness Texture Measures the spatial rate of change in intensity.

Lower values mean "finer" texture.
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dzm_sdhge 3D Dependent Zone Matrix (DZM)
Small Dependence High Grey Level
Emphasis

dzm_zdnu_norm_3D DZM Zone Distance Non-

Uniformity Normalized

dzm_hgze 3D DZM High Grey Level Zone
Emphasis

szm_szhge 3D Size Zone Matrix (SZM) Small Zone
High Grey Level Emphasis

szm_zsnu_norm_3D SZM Zone Size Non-Uniformity
Normalized

szm_sze 3D SZM Small Zone Emphasis

cm_joint_max_3D_avg Co-occurrence Matrix (GLCM) Joint
Maximum

cm_joint_entr_3D_avg Co-occurrence Matrix (GLCM) Joint
Entropy

cm_energy_3D_avg Co-occurrence Matrix (GLCM)
Energy

Texture

Texture

Texture

Texture

Texture

Texture

Texture

Texture

Texture

Measures the joint distribution of small dependence

zones with high grey levels.

Measures the variability of zone distances in the
image, normalized.

Measures the distribution of high grey-level values.

Measures the joint distribution of small size zones
with high grey levels.

Measures the variability of zone sizes in the image,
normalized.

Measures the distribution of small size zones.
Measures the most predominant pair of neighbouring
intensity values.

Measures the randomness/complexity of the intensity
distribution.

Measures the textural uniformity (also called Angular

Second Moment).
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ivh_diff v10 v90

ivh_v10

morph_geary ¢

morph_av

Intensity-Volume Histogram (IVH)
Difference between V10 and V90
IVH Intensity at 10th VVolume
Percentile

Morphological Geary's C

Morphological Feature (Average)

Intensity

Intensity

Shape

Shape

The range of intensity values containing the central

80% of the tumor volume.

The intensity level below which 10% of the tumor

volume exists.

Measures spatial autocorrelation; how similar a voxel

is to its neighbors.

This is not a standard feature name. 'morph’ refers to

shape, and 'av' likely means an average of some

property, but the specific feature is unclear.

Supplemental Table S5. Hazard ratio survival analysis (HRSA) results

Dataset PCA+ HRSA FFCV c-index = FFCV p- External Test  External Test
STD value c-index p-value
CF CWGBSA 0.3440.04 0 0.564 0.822
CT_HRF CWGBSA 0.6340.08 0.002 0.656 0.019
CT_HRF+CF CWGBSA 0.6340.08 0.002 0.653 0.118
PET_HRF CWGBSA 0.660.06 0.001 0.549 0.239
PET_HRF+CF CWGBSA 0.6740.07 0 0.553 0.052
S CT_DRF CWGBSA 0.6540.07 0.002 0.547 0.021
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S_CT_DRF+CF

S CT_DRF+CT_HRF
S_CT _DRF+CT_HRF+CF
S_PET_DRF
S_PET_DRF+CF

S_PET DRF+PET_HRF

S PET_DRF+PET_HRF+CF
CF

CT_HRF

CT_HRF+CF

PET_HRF

PET_HRF+CF
S_CT_DRF
S_CT_DRF+CF

S CT_DRF+CT_HRF
S_CT_DRF+CT_HRF+CF
S_PET_DRF
S_PET_DRF+CF

S_PET DRF+PET_HRF

CWGBSA
CWGBSA
CWGBSA
CWGBSA
CWGBSA
CWGBSA
CWGBSA
FSSVM
FSSVM
FSSVM
FSSVM
FSSVM
FSSVM
FSSVM
FSSVM
FSSVM
FSSVM
FSSVM
FSSVM

0.6540.06
0.6640.06
0.6640.06
0.6340.06
0.6340.06
0.6540.06
0.6540.06
0.6440.02
0.6440.08
0.6540.08
0.6540.07
0.6640.07
0.6240.04
0.6240.04
0.6640.05
0.6540.05
0.6040.06
0.649.05

0.6540.07

0.002
0.003
0.002
0.001
0.001

0.001
0.007
0.003

0.007
0.018
0.001
0.001
0.02

0.012
0.002

0.551
0.598
0.598
0.46

0.471
0.538
0.533
0.633
0.582
0.598
0.56

0.598
0.529
0.527
0.578
0.582
0.482
0.48

0.553

0.085
0.632
0.632
0.611
0.452
0.921
0.755
0.449
0.182
0.141
0.209
0.06

0.178
0.178
0.238
0.166
0.021
0.01

0.115
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S_PET_DRF+PET_HRF+CF FSSVM 0.6540.06 0.002 0.553 0.115

CF RSF 0.7140.05 0 0.613 0.263
CT_HRF RSF 0.6240.05 0.052 0.521 0.742
CT_HRF+CF RSF 0.64:0.12 0.001 0.523 0.886
PET_HRF RSF 0.650.06 0.002 0.573 0.628
PET_HRF+CF RSF 0.6520.06 0 0.569 0.107
S CT_DRF RSF 0.6140.05 0.014 0.553 0.075
S_CT_DRF+CF RSF 0.610.02 0.025 0.556 0.027
S_CT_DRF+CT_HRF RSF 0.660.05 0 0.632 0.585
S_CT_DRF+CT_HRF+CF RSF 0.620.05 0.004 0.598 0.335
S PET DRF RSF 0.590.03 0.229 0.509 0.068
S_PET_DRF+CF RSF 0.580.05 0.021 0.513 0.371
S_PET_DRF+PET_HRF RSF 0.630.06 0.02 0.587 0.207
S_PET_DRF+PET_HRF+CF RSF 0.6240.09 0.173 0.56 0.004

HRF: handcrafted Radiomics features, DRF: deep Radiomics features, DRF_CT: DRFs extracted from segmented CT, DRF_PET: DRFs
extracted from segmented PET, HRF_CT: HFRs extracted from segmented CT, HRF_PET: HFRs extracted from segmented PET, FSSVM: Fast
Survival Support Vector Machines, CWGBSA: Component-wise Gradient Boosting Survival Analysis, RSF: Random Survival Forest, FFCV:
Five-Fold Cross-Validation, HRSA: Hazard Ratio Survival Analysis. PCA: Principal Component Analysis.
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Supplemental Figure S2. Kaplan-Meier survival curves generated for Component-
wise Gradient Boosting Survival Analysis (CWGBSA) Results; SCT: Deep
Radiomics Features extracted from CT, CT: Handcrafted Radiomics Features
Extracted From CT, SPET: Deep Radiomics Features extracted from PET, PET:
Handcrafted Radiomics Features Extracted From PET
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Supplemental Figure S3. Kaplan-Meier survival curves generated for Fast Survival

Support Vector Machines (FSSVM) Results; SCT: Deep Radiomics Features

extracted from CT, CT: Handcrafted Radiomics Features Extracted From CT, SPET:

Deep Radiomics Features extracted from PET, PET: Handcrafted Radiomics Features
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Supplemental Figure S4. Kaplan-Meier survival curves generated for Random
Survival Forest (RSF) Results; SCT: Deep Radiomics Features extracted from CT,
CT: Handcrafted Radiomics Features Extracted From CT, SPET: Deep Radiomics
Features extracted from PET, PET: Handcrafted Radiomics Features Extracted From
PET
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