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1. Supplementary information on different types of graphs

Supplementary Table 1. Different types of graphs and corresponding descriptions

Variant
Graph type Description
Name
Directed DGP! Directed graphs leverage edge direction.
HAN capt k lationships in het h
HAND captures key relationships in heterogeneous graphs
through multi-level attention mechanisms.
MAGNN captures rich semantic information in heterogeneous
MAGNNM _ _ _ _
graphs through intra-metapath aggregation and interaction.
HetGNN enhances representation learning in heterogeneous
Heterogeneous!?) HetGNND! . .
graphs by integrating node features and structure.
GTN learns multi-hop meta-path connections to capture latent
GTNI®l
relationships in heterogeneous graphs.
oSl G2S converts graph structures into sequences, enabling
sequence-based modeling.
DCRNN models spatiotemporal dependencies using diffusion
DCRNN! _
_ convolution and recurrent neural networks.
Dynamic ) . . .
DGNN captures key features in dynamic relationships by
DGNNPI
adaptively updating graph structures.
HGNN leverages hypergraph structures to capture high-order
Hypergraph HGNNL! o _
relationships and enhance node representations.
) SGCN improves GNN efficiency and performance by
Signed SGCNI o
sparsifying graph structures.
APPNP combines random walk and propagation mechanisms
APPNP!!Z] . . .
for efficient and accurate node representation learning.
Large Graph . : . o .
ProPPR efficiently infers node relationships in graphs using
ProPPR!!?]

constrained random walks.




2. Supplementary information on different types of graphs

Supplementary Table 2. Graph structural features stratified by different levels

Level of
Attributes Description
Graph
Element type The type(s) of element(s) present in the alloy.
‘ The number of protons in the nucleus of the element,
Atomic number!!3] _ . S
serving as its fundamental identifier.
) The mass of the element’s atoms, influencing the overall
Atomic mass ] ] ) ]
density and some mechanical properties of the materials.
o The tendency of an atom to attract electrons when forming
Electronegativity _
chemical bonds.
Coordination The number of atoms to which a given atom is directly
number!!¢] bonded in the alloy.
‘ The crystal structure (e.g., FCC, BCC) corresponding to
Lattice typel!”l
the arrangement of atoms.
Atomic position!®! The spatial coordinates of each atom within the lattice.
‘ The mass-to-volume ratio of the material (for each
Density ) )
Nodes element, often taken as its standard/pure density).
. . The temperature at which the element transitions from a
Melting point

Thermal conductivity

Electrical conductivity

Elastic modulus

Yield strength

Hardness

Gibbs free energy!!”!

solid to a liquid phase.
The ability of the element (or resulting material) to
conduct heat.
The ability of the element (or resulting material) to
conduct electricity.
The element’s (or material’s) resistance to elastic
deformation under stress.
The stress at which the element (or material) begins to
plastically deform.
The resistance of the element (or material) to localized
plastic deformation (e.g., indentation or scratching).

A measure of the thermodynamic potential of the element,




Band structure

Valence electron

density

Diffusion coefficient

Metal Pricel2%

Voronoi information?!!

relevant to its stability in reactions or phase changes.
The electronic band characteristics (e.g., conduction and
valence bands) associated with the element.
The distribution or concentration of valence electrons for
a given element.
The rate at which an element diffused through the alloy
under given conditions.
The market cost of the element, affecting the economic
feasibility and large-scale production considerations.
Descriptors of local atomic environments, derived from

Voronoi tessellation methods in materials science.

Type of Chemical
Bond Between

Elements

Bonding Energy!??!

Specifies the bond category (e.g., metallic, covalent,

ionic) linking two elements.

The energy required to break or form the bond between
two elements, indicating bond strength.

The average atomic distance between two elements in the

Vertices Atomic Spacing!??!
alloy.
Atomic Exchange The energy associated with the exchange (or swapping) of
Energy atomic positions between different elements.
The angle between two bonds originating from the same
Bond Anglel** atom, reflecting local geometrical arrangement and
stability.
The environmental temperature affecting phase stability,
Graph Ambient Temperature

Applied Pressure

Chemical Environment

Applied Electric Field

diffusion behavior, and mechanical properties of the alloy.
External pressure applied to the alloy, influencing phase
transformations and mechanical behavior.
The surrounding chemical atmosphere (e.g., inert,
oxidizing), which can affect reactions such as corrosion or
oxidation.

The strength of the electric field, which can influence




diffusion and electrical properties in the alloy.
Applied Magnetic Field The strength of the external magnetic field, which can
affect phase transitions, domain structures, or magnetic

properties of the alloy.




3. Supplementary information on different types of GNNs
Supplementary Table 3. Different kinds of GNN

GNN type

Variants

Description

Recursive GNNI!3

Gated Recursion-based
Graph Neural Network
(GR-GNN)14]

Deep Recurrent Graph
Neural Network
(DRGNN)!!3!

Uses gated recursion to enhance
node and edge information
propagation within graphs.
Employs recurrent graph
convolutional layers and pooling
for effective graph classification,
initially applied in

bioinformatics datasets.

Graph Convolutional

Recurrent Networks

Combines graph convolutional
layers and RNNs to capture both

spatial and temporal

(GCRN)!7] dependencies in dynamic graph
data.
A scalable GNN model that
aggregates features from a fixed-
. Graph Sample and size neighborhood using
Convolutional . ‘
Aggregation functions such as mean, LSTM,
GNNU'él
(GraphSAGE) or pooling, enabling it to handle
large-scale graph datasets
efficiently.
Introduces attention mechanisms
‘ to GNNs, allowing each node to
Graph Attention Network . . . _
assign different weights to its
(GAT) . .
neighbors when aggregating
information.
Graph o Extends GAE with a variational
Variational Graph o
Autoencoders framework  for  probabilistic
Autoencoder (VGAE) _ _
(GAE)!8 learning of node embeddings.



GraphMAE (Masked
Graph Autoencoders)!'’!

A self-supervised model
focusing on feature
reconstruction with masked node
features and a scaled cosine error
function to achieve robust

training.

Spatial-temporal
GNN(ST-
GNNG)20

Spatial-temporal Graph
Neural Networks (ST-
GNNs)

ASTGCN (Attention-
Based Spatial-Temporal
Graph Convolutional

Network)!?!]

Integrates temporal
convolutional networks and
graph convolutions in a modular
fashion, commonly used for fast
traffic prediction by modeling
spatial-temporal correlations.

Employs attention mechanisms
across both spatial and temporal
dimensions, enabling dynamic
correlation modeling in traffic

data.
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