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1. Supplementary information on different types of graphs

Supplementary Table 1. Different types of graphs and corresponding descriptions

Graph type
Variant

Name
Description

Directed DGP[1] Directed graphs leverage edge direction.

Heterogeneous[2]

HAN[3]
HAN captures key relationships in heterogeneous graphs

through multi-level attention mechanisms.

MAGNN[4]
MAGNN captures rich semantic information in heterogeneous

graphs through intra-metapath aggregation and interaction.

HetGNN[5]
HetGNN enhances representation learning in heterogeneous

graphs by integrating node features and structure.

GTN[6]
GTN learns multi-hop meta-path connections to capture latent

relationships in heterogeneous graphs.

G2S[7]
G2S converts graph structures into sequences, enabling

sequence-based modeling.

Dynamic

DCRNN[8]
DCRNN models spatiotemporal dependencies using diffusion

convolution and recurrent neural networks.

DGNN[9]
DGNN captures key features in dynamic relationships by

adaptively updating graph structures.

Hypergraph HGNN[10]
HGNN leverages hypergraph structures to capture high-order

relationships and enhance node representations.

Signed SGCN[11]
SGCN improves GNN efficiency and performance by

sparsifying graph structures.

Large Graph

APPNP[12]
APPNP combines random walk and propagation mechanisms

for efficient and accurate node representation learning.

ProPPR[12]
ProPPR efficiently infers node relationships in graphs using

constrained random walks.



2. Supplementary information on different types of graphs

Supplementary Table 2. Graph structural features stratified by different levels

Level of

Graph
Attributes Description

Nodes

Element type The type(s) of element(s) present in the alloy.

Atomic number[13]
The number of protons in the nucleus of the element,

serving as its fundamental identifier.

Atomic mass
The mass of the element’s atoms, influencing the overall

density and some mechanical properties of the materials.

Electronegativity
The tendency of an atom to attract electrons when forming

chemical bonds.

Coordination

number[16]
The number of atoms to which a given atom is directly

bonded in the alloy.

Lattice type[17]
The crystal structure (e.g., FCC, BCC) corresponding to

the arrangement of atoms.

Atomic position[18] The spatial coordinates of each atom within the lattice.

Density
The mass-to-volume ratio of the material (for each

element, often taken as its standard/pure density).

Melting point
The temperature at which the element transitions from a

solid to a liquid phase.

Thermal conductivity
The ability of the element (or resulting material) to

conduct heat.

Electrical conductivity
The ability of the element (or resulting material) to

conduct electricity.

Elastic modulus
The element’s (or material’s) resistance to elastic

deformation under stress.

Yield strength
The stress at which the element (or material) begins to

plastically deform.

Hardness
The resistance of the element (or material) to localized

plastic deformation (e.g., indentation or scratching).

Gibbs free energy[19] A measure of the thermodynamic potential of the element,



relevant to its stability in reactions or phase changes.

Band structure
The electronic band characteristics (e.g., conduction and

valence bands) associated with the element.

Valence electron

density

The distribution or concentration of valence electrons for

a given element.

Diffusion coefficient
The rate at which an element diffused through the alloy

under given conditions.

Metal Price[20]
The market cost of the element, affecting the economic

feasibility and large-scale production considerations.

Voronoi information[21]
Descriptors of local atomic environments, derived from

Voronoi tessellation methods in materials science.

Vertices

Type of Chemical

Bond Between

Elements

Specifies the bond category (e.g., metallic, covalent,

ionic) linking two elements.

Bonding Energy[22]
The energy required to break or form the bond between

two elements, indicating bond strength.

Atomic Spacing[23]
The average atomic distance between two elements in the

alloy.

Atomic Exchange

Energy

The energy associated with the exchange (or swapping) of

atomic positions between different elements.

Bond Angle[24]
The angle between two bonds originating from the same

atom, reflecting local geometrical arrangement and

stability.

Graph Ambient Temperature
The environmental temperature affecting phase stability,

diffusion behavior, and mechanical properties of the alloy.

Applied Pressure
External pressure applied to the alloy, influencing phase

transformations and mechanical behavior.

Chemical Environment

The surrounding chemical atmosphere (e.g., inert,

oxidizing), which can affect reactions such as corrosion or

oxidation.

Applied Electric Field The strength of the electric field, which can influence



diffusion and electrical properties in the alloy.

Applied Magnetic Field The strength of the external magnetic field, which can

affect phase transitions, domain structures, or magnetic

properties of the alloy.



3. Supplementary information on different types of GNNs

Supplementary Table 3. Different kinds of GNN

GNN type Variants Description

Recursive GNN[13]

Gated Recursion-based

Graph Neural Network

(GR-GNN)[14]

Uses gated recursion to enhance

node and edge information

propagation within graphs.

Deep Recurrent Graph

Neural Network

(DRGNN)[15]

Employs recurrent graph

convolutional layers and pooling

for effective graph classification,

initially applied in

bioinformatics datasets.

Convolutional

GNN[16]

Graph Convolutional

Recurrent Networks

(GCRN)[17]

Combines graph convolutional

layers and RNNs to capture both

spatial and temporal

dependencies in dynamic graph

data.

Graph Sample and

Aggregation

(GraphSAGE)

A scalable GNN model that

aggregates features from a fixed-

size neighborhood using

functions such as mean, LSTM,

or pooling, enabling it to handle

large-scale graph datasets

efficiently.

Graph Attention Network

(GAT)

Introduces attention mechanisms

to GNNs, allowing each node to

assign different weights to its

neighbors when aggregating

information.

Graph

Autoencoders

(GAE)[18]

Variational Graph

Autoencoder (VGAE)

Extends GAE with a variational

framework for probabilistic

learning of node embeddings.



GraphMAE (Masked

Graph Autoencoders)[19]

A self-supervised model

focusing on feature

reconstruction with masked node

features and a scaled cosine error

function to achieve robust

training.

Spatial-temporal

GNN(ST-

GNNs)[20]

Spatial-temporal Graph

Neural Networks (ST-

GNNs)

Integrates temporal

convolutional networks and

graph convolutions in a modular

fashion, commonly used for fast

traffic prediction by modeling

spatial-temporal correlations.

ASTGCN (Attention-

Based Spatial-Temporal

Graph Convolutional

Network)[21]

Employs attention mechanisms

across both spatial and temporal

dimensions, enabling dynamic

correlation modeling in traffic

data.
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