

Supplementary Materials

Advances in graph neural networks for alloy design and properties predictions: a review

Zhede Zhao, Tao Hu*, Shuyu Bi, Dongwei Guan, Songzhe Xu, Chaoyue Chen, Weidong Xuan*, Zhongming Ren

State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.

***Correspondence to:** Prof. Tao Hu, Prof. Weidong Xuan, State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China. E-mail: taohu@shu.edu.cn;
wdxuan@shu.edu.cn

1. Supplementary information on different types of graphs

Supplementary Table 1. Different types of graphs and corresponding descriptions

Graph type	Variant Name	Description
Directed	DGP ^[1]	Directed graphs leverage edge direction.
	HAN ^[3]	HAN captures key relationships in heterogeneous graphs through multi-level attention mechanisms.
	MAGNN ^[4]	MAGNN captures rich semantic information in heterogeneous graphs through intra-metapath aggregation and interaction.
Heterogeneous ^[2]	HetGNN ^[5]	HetGNN enhances representation learning in heterogeneous graphs by integrating node features and structure.
	GTN ^[6]	GTN learns multi-hop meta-path connections to capture latent relationships in heterogeneous graphs.
	G2S ^[7]	G2S converts graph structures into sequences, enabling sequence-based modeling.
Dynamic	DCRNN ^[8]	DCRNN models spatiotemporal dependencies using diffusion convolution and recurrent neural networks.
	DGNN ^[9]	DGNN captures key features in dynamic relationships by adaptively updating graph structures.
Hypergraph	HGNN ^[10]	HGNN leverages hypergraph structures to capture high-order relationships and enhance node representations.
Signed	SGCN ^[11]	SGCN improves GNN efficiency and performance by sparsifying graph structures.
Large Graph	APPNP ^[12]	APPNP combines random walk and propagation mechanisms for efficient and accurate node representation learning.
	ProPPR ^[12]	ProPPR efficiently infers node relationships in graphs using constrained random walks.

2. Supplementary information on different types of graphs

Supplementary Table 2. Graph structural features stratified by different levels

Level of Graph	Attributes	Description
Nodes	Element type	The type(s) of element(s) present in the alloy.
	Atomic number ^[13]	The number of protons in the nucleus of the element, serving as its fundamental identifier.
	Atomic mass	The mass of the element's atoms, influencing the overall density and some mechanical properties of the materials.
	Electronegativity	The tendency of an atom to attract electrons when forming chemical bonds.
	Coordination number ^[16]	The number of atoms to which a given atom is directly bonded in the alloy.
	Lattice type ^[17]	The crystal structure (e.g., FCC, BCC) corresponding to the arrangement of atoms.
	Atomic position ^[18]	The spatial coordinates of each atom within the lattice.
	Density	The mass-to-volume ratio of the material (for each element, often taken as its standard/pure density).
	Melting point	The temperature at which the element transitions from a solid to a liquid phase.
	Thermal conductivity	The ability of the element (or resulting material) to conduct heat.
Edges	Electrical conductivity	The ability of the element (or resulting material) to conduct electricity.
	Elastic modulus	The element's (or material's) resistance to elastic deformation under stress.
	Yield strength	The stress at which the element (or material) begins to plastically deform.
	Hardness	The resistance of the element (or material) to localized plastic deformation (e.g., indentation or scratching).
Graph	Gibbs free energy ^[19]	A measure of the thermodynamic potential of the element,

		relevant to its stability in reactions or phase changes.
	Band structure	The electronic band characteristics (e.g., conduction and valence bands) associated with the element.
	Valence electron density	The distribution or concentration of valence electrons for a given element.
	Diffusion coefficient	The rate at which an element diffused through the alloy under given conditions.
	Metal Price ^[20]	The market cost of the element, affecting the economic feasibility and large-scale production considerations.
	Voronoi information ^[21]	Descriptors of local atomic environments, derived from Voronoi tessellation methods in materials science.
	Type of Chemical Bond Between Elements	Specifies the bond category (e.g., metallic, covalent, ionic) linking two elements.
	Bonding Energy ^[22]	The energy required to break or form the bond between two elements, indicating bond strength.
Vertices	Atomic Spacing ^[23]	The average atomic distance between two elements in the alloy.
	Atomic Exchange Energy	The energy associated with the exchange (or swapping) of atomic positions between different elements.
	Bond Angle ^[24]	The angle between two bonds originating from the same atom, reflecting local geometrical arrangement and stability.
Graph	Ambient Temperature	The environmental temperature affecting phase stability, diffusion behavior, and mechanical properties of the alloy.
	Applied Pressure	External pressure applied to the alloy, influencing phase transformations and mechanical behavior.
	Chemical Environment	The surrounding chemical atmosphere (e.g., inert, oxidizing), which can affect reactions such as corrosion or oxidation.
	Applied Electric Field	The strength of the electric field, which can influence

diffusion and electrical properties in the alloy.

Applied Magnetic Field The strength of the external magnetic field, which can affect phase transitions, domain structures, or magnetic properties of the alloy.

3. Supplementary information on different types of GNNs

Supplementary Table 3. Different kinds of GNN

GNN type	Variants	Description
Recursive GNN ^[13]	Gated Recursion-based Graph Neural Network (GR-GNN) ^[14]	Uses gated recursion to enhance node and edge information propagation within graphs.
	Deep Recurrent Graph Neural Network (DRGNN) ^[15]	Employs recurrent graph convolutional layers and pooling for effective graph classification, initially applied in bioinformatics datasets.
Convolutional GNN ^[16]	Graph Convolutional Recurrent Networks (GCRN) ^[17]	Combines graph convolutional layers and RNNs to capture both spatial and temporal dependencies in dynamic graph data.
	Graph Sample and Aggregation (GraphSAGE)	A scalable GNN model that aggregates features from a fixed-size neighborhood using functions such as mean, LSTM, or pooling, enabling it to handle large-scale graph datasets efficiently.
Graph Autoencoders (GAE) ^[18]	Graph Attention Network (GAT)	Introduces attention mechanisms to GNNs, allowing each node to assign different weights to its neighbors when aggregating information.
	Variational Graph Autoencoder (VGAE)	Extends GAE with a variational framework for probabilistic learning of node embeddings.

	<p>A self-supervised model focusing on feature reconstruction with masked node features and a scaled cosine error function to achieve robust training.</p>
	<p>Spatial-temporal Graph Neural Networks (ST-GNNs)</p>
Spatial-temporal GNN(ST-GNNs) ^[20]	<p>ASTGCN (Attention-Based Spatial-Temporal Graph Convolutional Network)^[21]</p> <p>Integrates temporal convolutional networks and graph convolutions in a modular fashion, commonly used for fast traffic prediction by modeling spatial-temporal correlations.</p> <p>Employs attention mechanisms across both spatial and temporal dimensions, enabling dynamic correlation modeling in traffic data.</p>

REFERENCES

1. Kampffmeyer M, Chen Y, Liang X, Wang H, Zhang Y, Xing EP. Rethinking Knowledge Graph Propagation for Zero-Shot Learning. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. Long Beach; 2019:11487-11496.
2. Sun Y, Han J, Yan X. PathSim: meta path-based top-K similarity search in heterogeneous information networks. *PROC VLDB ENDOW*. 2011;4(11):992-003. DOI:10.14778/3402707.3402736
3. Wang X, Ji H, Shi C, et al. Heterogeneous Graph Attention Network. In: *The World Wide Web Conference*. New York, USA; 2019:2022-2032.
4. Fu X, Zhang J, Meng Z. MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding. In: *Proceedings of the Web Conference 2020*. Taipei, Taiwan; 2020:2331-2341.
5. Zhang C, Song D, Huang C, Swami A, Chawla NV. Heterogeneous Graph Neural Network. In: *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. New York, USA; 2019:793-803.
6. Yun S, Jeong M, Kim R, Kang J, Kim HJ. Graph Transformer Networks. In: *Advances in Neural Information Processing Systems*. ; 2019:11960-11970.
7. Beck D, Haffari G, Cohn T. Graph-to-Sequence Learning using Gated Graph Neural Networks. arXiv 2018, arXiv:1806.09835. Available online: <https://arxiv.org/abs/1806.09835> (accessed 26 June 2018)
8. Li Y, Yu R, Shahabi C. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. arXiv 2016, arXiv:1707.01926. Available online: <https://arxiv.org/abs/1707.01926> (accessed 22 February 2018).
9. Manessi F, Rozza A, Manzo M. Dynamic graph convolutional networks. *Pattern Recognit*. 2020;97:107000. DOI:10.1016/j.patcog.2019.107000
10. Yifan F, Haoxuan Y, Zizhao Z, Rongrong J, Yue G. Hypergraph Neural Networks. In: *Proceedings of the AAAI Conference on Artificial Intelligence*. AAAI Press, Washington, DC, USA; 2019:33(01):3558-3565.
11. Tyler D, Yao M, Jiliang T. Signed Graph Convolutional Networks. In: *2018 IEEE International Conference on Data Mining (ICDM)*. IEEE, Singapore; 2018:929-934.
12. Bojchevski A, Gasteiger J, Perozzi B, et al. Scaling Graph Neural Networks with Approximate PageRank. In: *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM: New York, NY, USA; 2020:2464-2473.

13. Li W, Li S, Ma S, He Y, Chen D, Sun X. Recursive Graphical Neural Networks for Text Classification. arXiv 2019, arXiv:1909.08166. Available online: <http://arxiv.org/abs/1909.08166> (accessed 18 September 2019).
14. Ge K, Zhao JQ, Zhao YY. GR-GNN: Gated Recursion-Based Graph Neural Network Algorithm. *MATHEMATICS-BASEL*. 2022;10(7):1171. DOI:10.3390/math10071171
15. Pasa L, Navarin N, Sperduti A. Deep Recurrent Graph Neural Networks. In: *ESANN 2020- Proceedings, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning*. Bruges, Belgium; 2020:157-162.
16. Kipf TN, Welling M. Semi-Supervised Classification with Graph Convolutional Networks. Published online February 22, 2017. DOI:10.48550/arXiv.1609.02907
17. Seo Y, Defferrard M, Vandergheynst P, Bresson X. Structured Sequence Modeling with Graph Convolutional Recurrent Networks. In: Cheng L, Leung ACS, Ozawa S, eds. *Neural Information Processing: 25th International Conference*. Springer International Publishing, Cham, Switzerland,; 2018:362-373.
18. Kipf TN, Welling M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.07308. Available online: <http://arxiv.org/abs/1611.07308> (accessed 15 February 2025).
19. Hou Z, Liu X, Cen Y, et al. GraphMAE: Self-Supervised Masked Graph Autoencoders. In: *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*. Association for Computing Machinery; 2022:594-604.
20. Yu B, Yin H, Zhu Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In: *Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence*. Stockholm, Sweden; 2018:3634-3640.
21. Guo S, Lin Y, Feng N, Song C, Wan H. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence*. AAAI Press, Honolulu, Hawaii, USA; 2019:33:922-929.