Supplementary Materials

Mildly oxidized and phenol-enriched carbon nanotubes as efficient and selective electrocatalysts for the 2e⁻ oxygen reduction reaction

Giulia Tuci^{1,*}, Marco Bonechi², Andrea Rossin¹, Enrico Berretti¹, Matteo Ceppatelli^{1,3}, Lorenzo Poggini^{1,2}, Massimo Innocenti², Giuliano Giambastiani^{1,2,*}

¹Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR, Sesto Fiorentino 50019, Florence, Italy.

²Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Sesto Fiorentino 50019, Florence, Italy.

³LENS, European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino 50019, Florence, Italy.

*Correspondence to: Dr. Giulia Tuci, Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR, Via Madonna del Piano 10, Sesto Fiorentino 50019, Florence, Italy. E-mail: giulia.tuci@iccom.cnr.it; Prof. Giuliano Giambastiani, Department of Chemistry "U. Schiff" - DICUS and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino 50019, Florence, Italy. E-mail: giuliano.giambastiani@unifi.it

Supplementary Figure 1. TEM images recorded on (A) MW-ox^{RT} (1) and (B) MW-ox^{HT} (2).

Supplementary Figure 2. N₂ adsorption-desorption isothermal curves conducted at 77 K for pristine MWCNTs along with their corresponding pore size distribution (inset).

Supplementary Figure 3. FT-IR spectra of p-MWCNTs, MW-ox^{RT} (1) and MW-ox^{HT}(2).

Supplementary Table 1. Elemental analyses (EA) and semi-quantitative XPS analyses conducted on MW-ox^{RT} (1) and MW-ox^{HT}(2).

	EA ^a		XPS				
	С	Н	O at.% ^b (wt.%) ^c	carboxylic	carbonyl	Phenolic	
	wt.%	wt.%		groups (%) ^d	groups (%) ^d	groups (%) ^d	
$MW-ox^{RT}(1)$	64.1	2.2	27.6°(33.7)	52	36	12	
$MW-ox^{HT}(2)$	76.5	0.9	19.2 (24.1)	37	37	26	

^aaverage values calculated over three independent runs. ^b estimated from high resolution O 1*s* XPS signal. ^c calculated wt.% from XPS at.% data. ^d relative % calculated from fitting of high resolution 1*s* XPS signals. ^e 29.3 O at. % if adventitious water is taken into consideration.

Supplementary Figure 4. Raman spectra of pristine MWCNTs (A) and oxidized samples **1** (B) and **2** (C) along with their relative fitting. I_D/I_G ratio is 2.27, 3.34 and 2.58 for MWCNTs, MW-ox^{RT} (**1**) and MW-ox^{HT}(**2**), respectively.

Supplementary Figure 5. XPS survey spectra of (A) MW-ox^{RT} (1) and (B) MW-ox^{HT}(2).

Supplementary Figure 6. Cyclic voltammetries (CV) acquired in N₂ and O₂ saturated KOH 0.1 M solution for MW-ox^{RT} (1) at 10 mV/s in the +0.1 \div -0.9 V vs. Ag/AgCl/KCl_{sat} potential range.

Supplementary Figure 7. (A) H_2O_2 % values as obtained from ring current values and (B) number of electrons exchanged *per* O_2 molecule (n) as obtained from K-L equation in the -0.65 ÷ -0.35 V potential range.

Supplementary Figure 8. LSV curves for (A) MW-ox^{RT} (1) and (B) MW-ox^{HT} (2) registered at 10 mV/s at variable electrode spin rates (300 - 2500 rpm).

Supplementary Figure 9. Tafel plots obtained from LSV registered at 1600 rpm for p-MWCNTs, MW-ox^{RT} (1) and MW-ox^{HT} (2).

Supplementary Table 2. Comparison of MW-ox ^{HT} (2) performance with the more representative
O-decorated carbon-based materials from literature

Sample	Eon (V) ^a	E _{1/2} (V) ^a	$H_2O_2(\%)$	Ref.
$MW-ox^{HT}(2)$	-0.14	-0.25	85	This work
O-CNTs	-0.22	-0.29	90	[1]
F-mrGO	-0.19	-0.32	>99	[2]
o-GOMC-1	-0.16	-0.29	93	[3]
aCB	-0.15	-0.23	94	[4]
CB600	-0.14	-0.28	56	[5]
rGO _{KOH}	-0.16	-0.30	>99	[6]
GNP _{C=0}	-0.15	-0.21	90	[7]
NT-3DFG	-0.18	-0.33	94	[8]
MCHS-9:1	-0.14	-0.22	56	[9]
HCNFs	-0.12	-0.27	97	[10]
O-GOMC	-0.16	-0.24	90	[11]
OCNS ₉₀₀	-0.19	-0.21	90	[12]
AC-CO ₂ B	-0.14	-0.25	90	[13]
CQD	-0.14	-0.30	97	[14]
MW/C ₆ H ₄ OH	-0.15	-0.29	79	[15]
AQ-CNT-2	-0.19	-0.33	80	[16]
C-O-12h	-0.19	-0.26	85	[17]
o-CNT 8	-0.17	-0.25	97	[18]

^a Potential values vs. Ag/AgCl/KCl_{sat}

REFERENCES

1. Lu Z, Chen G, Siahrostami S, et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. *Nat. Catal.* 2018; *1*: 156-62. DOI: 10.1038/s41929-017-0017-x

2. Kim HW, Ross MB, Kornienko N, et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. *Nat. Catal.* 2018; *1*: 282-90. DOI: 10.1038/s41929-018-0044-2

 Sa YJ, Kim JH, Joo SH, Active Edge-Site-Rich Carbon Nanocatalysts with Enhanced ElectronTransfer for Efficient Electrochemical Hydrogen Peroxide Production. *Angew. Chem. Int. Ed.* 2019; 58: 1100-5. DOI: 10.1002/anie.201812435

4. Wang W, Hu Y, Liu Y, Zheng Z, Chen S, Self-Powered and Highly Efficient Production of H₂O₂ through a Zn-Air Battery with Oxygenated Carbon Electrocatalyst. *ACS Appl. Mater. Interfaces* 2018; *10*: 31855-9. DOI: 10.1021/acsami.8b11703

5. Zhang H, Li Y, Zhao Y, Li G, Zhang F, Carbon Black Oxidized by Air Calcination for Enhanced H₂O₂ Generation and Effective Organics Degradation. *ACS Appl. Mater. Interfaces* 2019; *11*: 27846-53. DOI: 10.1021/acsami.9b07765

6. Zhu J, Xiao X, Zheng K, et al., KOH-treated reduced graphene oxide: 100% selectivity for H₂O₂ electroproduction. *Carbon* 2019; *153*: 6-11. Doi: 10.1016/j.carbon.2019.07.009

 Han G-F, Li F, Zou W, et al., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H₂O₂. *Nat. Commun.* 2020; *11*: 2209. DOI: 10.1038/s41467-020-15782-z

8. San Roman D, Krishnamurthy D, Garg R, et al., Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis. *ACS Catal.* 2020: 1993-2008.

9. Pang Y, Wang K, Xie H, Sun Y, Titirici M-M, Chai G-L, Mesoporous Carbon Hollow Spheres as Efficient Electrocatalysts for Oxygen Reduction to Hydrogen Peroxide in Neutral Electrolytes. *ACS Catal.* 2020; *10*: 7434-42. DOI: 10.1021/acscatal.0c00584

 Dong K, Liang J, Wang Y, et al., Honeycomb Carbon Nanofibers: A Superhydrophilic O₂-Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Two-Electron Oxygen Reduction Reaction. *Angew. Chem. Int. Ed.* 2021; *60*: 10583-7. DOI: 10.1002/anie.202101880

Lim JS, Kim HJ, Woo J, et al., Designing highly active nanoporous carbon H₂O₂ production electrocatalysts through active site identification. *Chem* 2021; 7: 3114-30. DOI: 10.1016/j.chempr.2021.08.007

12. Chen S, Luo T, Chen K, et al., Chemical Identification of Catalytically Active Sites on Oxygendoped Carbon Nanosheet to Decipher the High Activity for Electro-synthesis Hydrogen Peroxide. *Angew. Chem. Int. Ed.* 2021; *60*: 16607-14. DOI: 10.1002/anie.202104480

13. Sun F, Yang C, Qu Z, et al., Inexpensive activated coke electrocatalyst for high-efficiency hydrogen peroxide production: Coupling effects of amorphous carbon cluster and oxygen dopant. *Appl. Catal. B: Environ.* 2021; *286*: 119860. DOI: 10.1016/j.apcatb.2020.119860

Guo Y, Zhang R, Zhang S, et al., Ultrahigh oxygen-doped carbon quantum dots for highly efficient H₂O₂ production via two-electron electrochemical oxygen reduction. *Energy Environ. Sci.* 2022; *15*: 4167-74. DOI: 10.1039/d2ee01797k

Tuci G, Rossin A, Zhang X, et al., Metal-Free Electrocatalysts for the Selective 2e⁻ Oxygen Reduction Reaction: A Never-Ending Story? *Chem. Eur. J.* 2023; *29*: e202301036. DOI: 10.1002/chem.202301036

16. Lee J, Lee Y, Lim JS, et al., Discriminating active sites for the electrochemical synthesis of H₂O₂ by molecular functionalisation of carbon nanotubes. *Nanoscale* 2023; *15*: 195-203. DOI: 10.1039/d2nr04652k

17. Xing Z, Shi K, Parsons ZS, Feng X, Interplay of Active Sites and Microenvironment in High-RateElectrosynthesis of H₂O₂ on Doped Carbon. *ACS Catal.* 2023; *13*: 2780-9. DOI: 10.1021/acscatal.2c05639

 She F, Guo Z, Liu F, et al., Curvature-Dependent Electrochemical Hydrogen Peroxide SynthesisPerformance of Oxidized Carbon Nanotubes. *ACS Catal.* 2024; *14*: 10928-38. DOI: 10.1021/acscatal.4c01637