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Supplementary Figure 1. TEM images recorded on (A) MW-oxRT (1) and (B) MW-oxHT (2).

Supplementary Figure 2. N2 adsorption-desorption isothermal curves conducted at 77 K for pristine

MWCNTs along with their corresponding pore size distribution (inset).



Supplementary Figure 3. FT-IR spectra of p-MWCNTs, MW-oxRT (1) and MW-oxHT(2).



Supplementary Table 1. Elemental analyses (EA) and semi-quantitative XPS analyses conducted

on MW-oxRT (1) and MW-oxHT(2).

EAa XPS

C

wt.%

H

wt.%
O at.%b (wt.%) c

carboxylic

groups (%)d
carbonyl

groups (%)d
Phenolic

groups (%)d

MW-oxRT (1) 64.1 2.2 27.6e (33.7) 52 36 12

MW-oxHT(2) 76.5 0.9 19.2 (24.1) 37 37 26
aaverage values calculated over three independent runs. b estimated from high resolution O 1s XPS

signal. c calculated wt.% from XPS at.% data. d relative % calculated from fitting of high resolution 1s

XPS signals. e 29.3 O at. % if adventitious water is taken into consideration.

Supplementary Figure 4. Raman spectra of pristine MWCNTs (A) and oxidized samples 1 (B) and 2

(C) along with their relative fitting. ID/IG ratio is 2.27, 3.34 and 2.58 for MWCNTs, MW-oxRT (1) and

MW-oxHT(2), respectively.



Supplementary Figure 5. XPS survey spectra of (A) MW-oxRT (1) and (B) MW-oxHT(2).

Supplementary Figure 6. Cyclic voltammetries (CV) acquired in N2 and O2 saturated KOH 0.1 M

solution for MW-oxRT (1) at 10 mV/s in the +0.1 ÷ -0.9 V vs. Ag/AgCl/KClsat. potential range.



Supplementary Figure 7. (A) H2O2 % values as obtained from ring current values and (B) number of

electrons exchanged per O2 molecule (n) as obtained from K-L equation in the -0.65 ÷ -0.35 V potential

range.

Supplementary Figure 8. LSV curves for (A) MW-oxRT (1) and (B) MW-oxHT (2) registered at 10

mV/s at variable electrode spin rates (300 - 2500 rpm).



Supplementary Figure 9. Tafel plots obtained from LSV registered at 1600 rpm for p-MWCNTs,

MW-oxRT (1) and MW-oxHT (2).



Supplementary Table 2. Comparison of MW-oxHT (2) performance with the more representative

O-decorated carbon-based materials from literature

Sample EON (V)a E1/2 (V)a H2O2 (%) Ref.

MW-oxHT (2) -0.14 -0.25 85 This work

O-CNTs -0.22 -0.29 90 [1]

F-mrGO -0.19 -0.32 >99 [2]

o-GOMC-1 -0.16 -0.29 93 [3]

aCB -0.15 -0.23 94 [4]

CB600 -0.14 -0.28 56 [5]

rGOKOH -0.16 -0.30 >99 [6]

GNPC=O -0.15 -0.21 90 [7]

NT-3DFG -0.18 -0.33 94 [8]

MCHS-9:1 -0.14 -0.22 56 [9]

HCNFs -0.12 -0.27 97 [10]

O-GOMC -0.16 -0.24 90 [11]

OCNS900 -0.19 -0.21 90 [12]

AC-CO2B -0.14 -0.25 90 [13]

CQD -0.14 -0.30 97 [14]

MW/C6H4OH -0.15 -0.29 79 [15]

AQ-CNT-2 -0.19 -0.33 80 [16]

C-O-12h -0.19 -0.26 85 [17]

o-CNT 8 -0.17 -0.25 97 [18]
a Potential values vs. Ag/AgCl/KClsat
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