Energy Materials

Supplementary Materials

Sea urchin-like La-doped MnO₂ for electrocatalytic oxidation degradation of sulfonamide in water

Xia Wu^{1,#}, Ming Chen^{2,#}, Shuang Li^{3,#}, Xiaohan Liu⁴, Xiaoxiang Xu^{3,*}, Weilong Wang³, Wei Zhang^{4,*}, Rui Cao^{4,*}

¹Department of Otorhinolaryngology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China. ²Department of Pediatrics Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang, Xiangyang 441021, Hubei, China. ³Department of Otorhinolaryngology-Head and Neck Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.

⁴School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shannxi, China.

*Correspondence to: Dr. Xiaoxiang Xu, Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China. E-mail: zn003504@whu.edu.cn; Prof. Wei Zhang and Prof. Rui Cao, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shannxi, China. E-mail: zw@snnu.edu.cn; ruicao@snnu.edu.cn

[#]Authors contributed equally.

Calculation methods

The formula for the calculation of the Turnover Frequency (TOF) is as follows:

$$TOF = \frac{j \times N_A}{Z \times F \times n} \tag{1}$$

$$n = m \times N \tag{2}$$

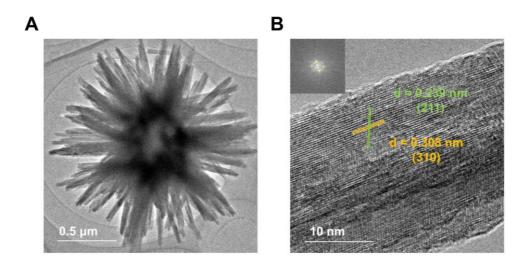
j (mA/cm²) denotes the current density measured at an overpotential of 470 mV; N_A denotes Avogadro constant; F denotes Faraday constant; Z denotes the number of electrons required to generate one product molecule; n denotes the surface concentration or exact number of active sites in the catalytic reaction. In OER, the n value is 4, representing the number of electrons transferred when one molecule of O₂ is formed. In Equation (2), m (g/cm²) and N (g⁻¹) represent the load mass per square centimeter of electrode surface and the number of active sites per gram of catalyst, respectively.

The relationship between ECSA (cm²) and $C_{\rm dl}$ (μ F) is shown in Equation (3):

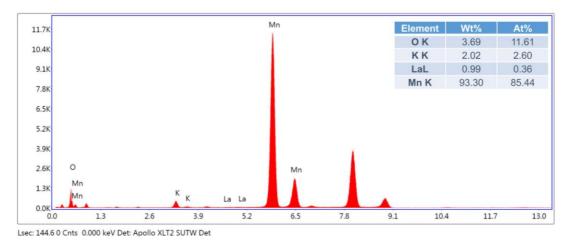
$$ECSA = C_{dl}/C_{s}$$
 (3)

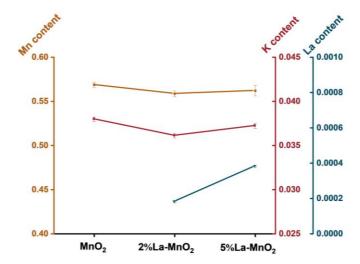

The routes of electrocatalytic degradation of SA:

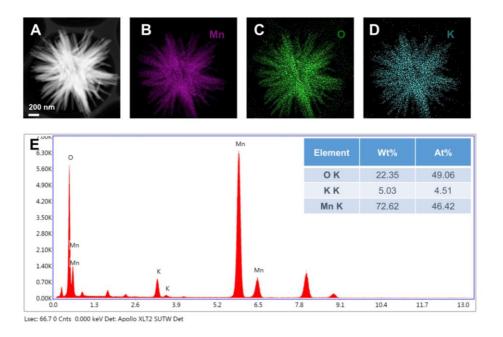
$$H_{2}N \longrightarrow \begin{array}{c} & & & \\$$

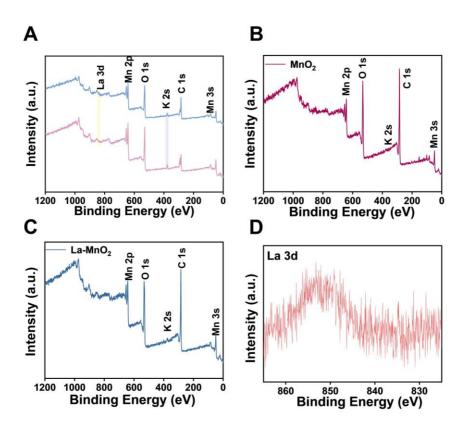

The formula for calculating the sulfonamide degradation rate:

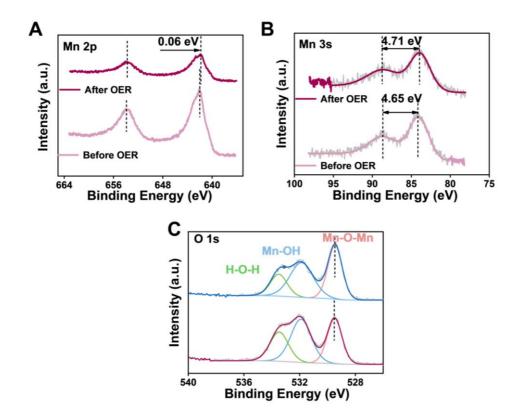
$$\eta = \frac{C_0 - C_t}{C_0} \tag{6}$$

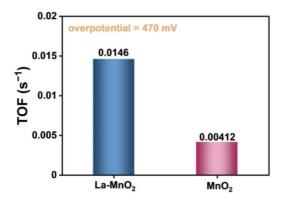

 C_0 and C_t are the initial sulfonamide concentration and the concentration at time t, respectively.

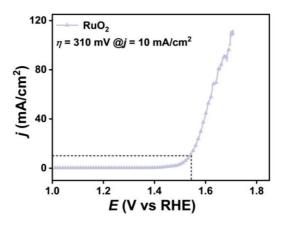

Supplementary Figure 1. (A) The HR-TEM image of α -MnO₂ (The inset shows the pore structure). The SEM images of MnO₂ synthesized with (B) 0 M, (C) 0.282 M, (D) 0.417 M, and (E) 0.550 M H₂SO₄.

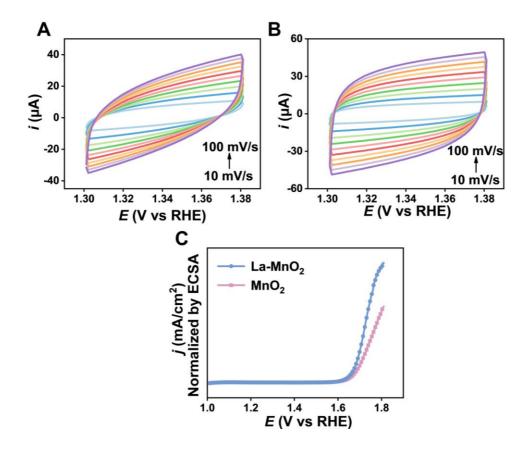

Supplementary Figure 2. (A) The TEM and (B) HR-TEM images of MnO₂ (The inset shows the corresponding FFT pattern).

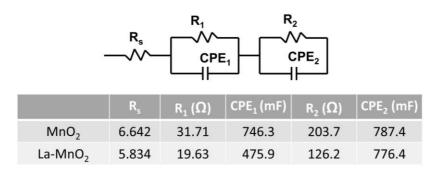

Supplementary Figure 3. The EDX spectrum of La-doped MnO₂.

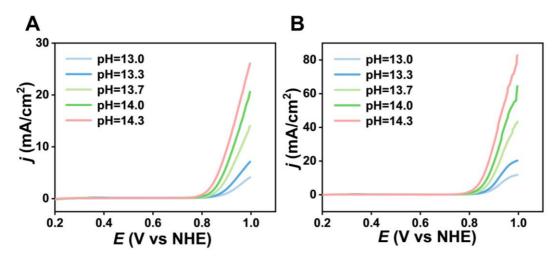

Supplementary Figure 4. The ICP-OES results for MnO₂, 2% La-doped MnO₂, and 5% La-doped MnO₂.

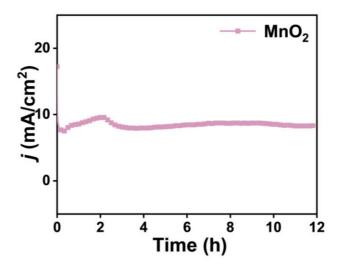

Supplementary Figure 5. (A-D) The HAADF-STEM image and the corresponding elemental mapping images of the MnO₂. (E) The EDX spectrum of pure MnO₂.

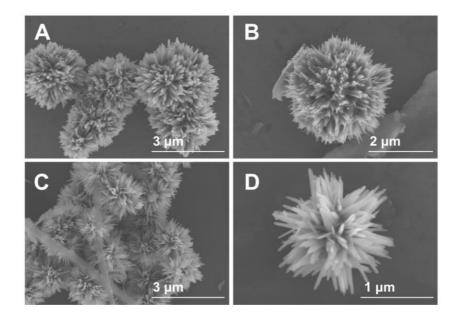

Supplementary Figure 6. (A) The XPS survey spectra of La-doped MnO₂ (top) and MnO₂ (bottom). The XPS survey spectra of (B) MnO₂ and (C) La-doped MnO₂ after OER. (D) The La 3d XPS spectrum of La-doped MnO₂ after OER.

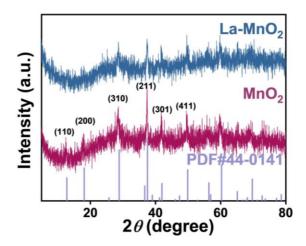

Supplementary Figure 7. (A) Mn 2p and (B) Mn 3s XPS spectra for MnO₂ before and after OER. (C) O 1s XPS spectra of La-doped MnO₂ (top) and MnO₂ (bottom).


Supplementary Figure 8. The TOF for OER of La-doped MnO₂ and MnO₂ at an overpotential of 470 mV.

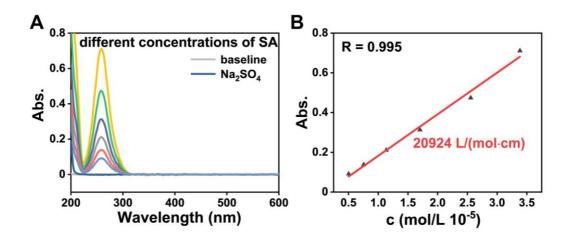

Supplementary Figure 9. The OER LSV polarization curve of RuO₂ in 1.0 M KOH.

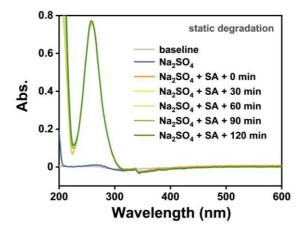

Supplementary Figure 10. The charging currents of (A) MnO₂ and (B) La-doped MnO₂ samples recorded in the non-Faradaic potential region at different scan rates. (C) The normalized OER activity of the two samples.


Supplementary Figure 11. The equivalent circuit model (top) and the fitted results for the two catalysts (bottom).

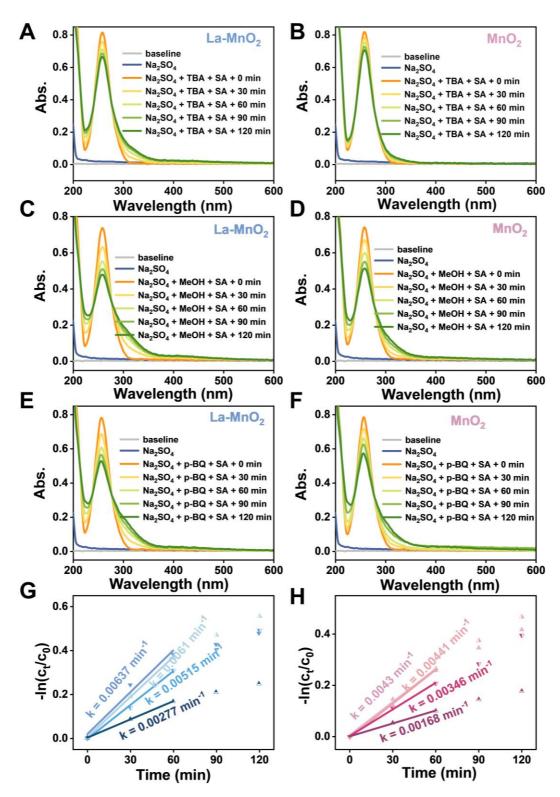

Supplementary Figure 12. The pH-dependent LSVs of (A) MnO_2 and (B) La-doped MnO_2 at a scan rate of 5 mV s⁻¹.

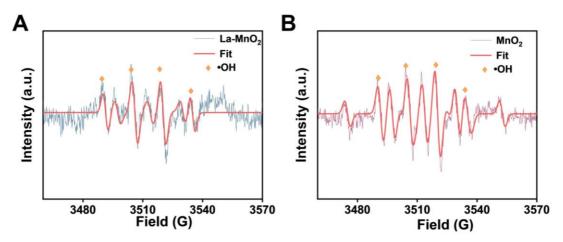
Supplementary Figure 13. The CPE of MnO₂ for OER at 1.75 V (vs RHE) without iR compensation.

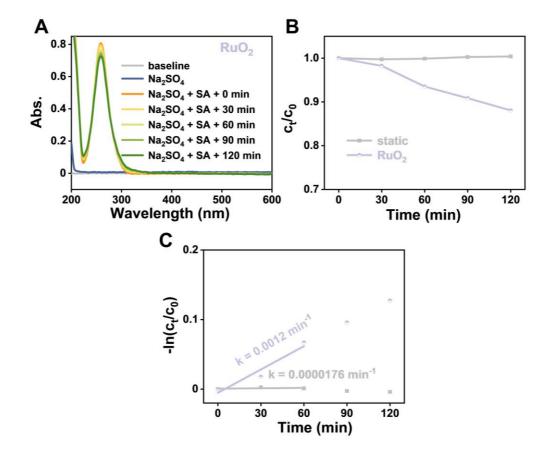

Supplementary Figure 14. The SEM images of (A, B) La-doped MnO_2 and (C, D) MnO_2 after CPE.

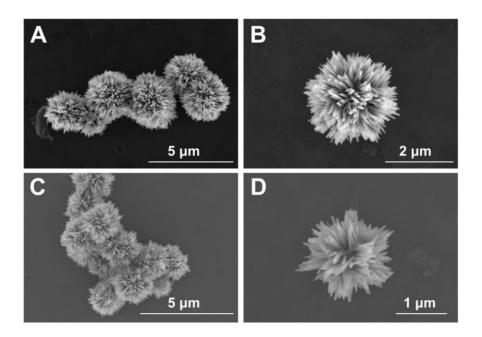

Supplementary Figure 15. The XRD patterns of La-doped MnO₂ and MnO₂ after OER.

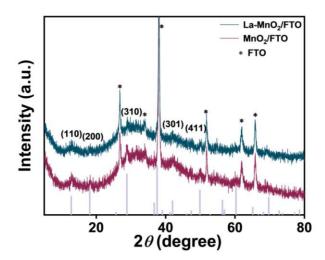
$$H_2N$$
 S NH_2


Supplementary Figure 16. The structure of SA.


Supplementary Figure 17. (A) The UV-vis absorption spectra of solutions of Na₂SO₄ with different concentrations of SA. (B) The standard curve of SA in water.


Supplementary Figure 18. The UV-vis absorption spectra of SA under static degradation.


Supplementary Figure 19. The UV-vis absorption spectra of solutions containing Na₂SO₄ and SA, with the addition of (A, B) TBA, (C, D) MeOH, or (E, F) *p*-BQ during electrolysis for (A, C, and E) La-doped MnO₂ and (B, D, and F) MnO₂ catalysts at 2.1 V over various time intervals. The electrocatalytic degradation kinetics of SA with (G) La-doped MnO₂ and (H) MnO₂ catalysts in the presence of different radical scavengers.


Supplementary Figure 20. EPR spectra of •OH in (A) La-doped MnO₂ and (B) MnO₂.

Supplementary Figure 21. (A) The UV-vis absorption spectra of a solution of Na₂SO₄ and SA during electrolysis by RuO₂ at 2.1 V for different times. (B) The comparison of the electrochemical degradation efficiency of RuO₂ and the static degradation efficiency. (C) The corresponding electrocatalytic degradation kinetics of SA.

Supplementary Figure 22. The SEM images of (A, B) La-doped MnO_2 and (C, D) MnO_2 after SA degradation.

Supplementary Figure 23. The XRD patterns of La-doped MnO₂ and MnO₂ after SA degradation.

Supplementary Table 1. The La^{3+} ion leaching amount after 12 hours of constant potential electrolysis

Time (h)	12
La Concentration (ppb)	0.8436 ± 0.05

Supplementary Table 2. Comparison of OER performance of sea urchin-like α -MnO₂ catalyst with other recently reported Mn oxide electrocatalysts

Catalysts	Electrolyte	Overpotential (mV)	Tafel Slope	Ref.
		@ 10 mA/cm ²	(mV/dec)	
Sea urchin-like	1 М КОН	450	71	This
La-MnO2				work
β -MnO ₂	1 M KOH	561	187	[1]
τ -MnO ₂	1 M KOH	527	188	[1]
Mn_3O_4	1 M KOH	890	343	[2]
α -MnO ₂ -NWN	1 M KOH	467	65.6	[3]
Mn_2O_3	1 M KOH	470 (@ 1 mA/cm ²)	-	[4]
$2D Mn_3O_4$	0.1 M KOH	670 (@ 5 mA/cm ²)	316	[5]
MnO ₂ @PFANI nanowire	1 М КОН	440	82	[6]
Mesoporous Mn_2O_3	0.1 M KOH	470	-	[7]
δ -MnO ₂ /CC	1 M KOH	495	179	[8]
$MnO_2\text{-}Ni_{0.002(M)}$	0.1 M KOH	445	86	[9]
Mo/α - MnO_2	1 M KOH	440	86	[10]
Al-doped Mn ₃ O ₄	1 M KOH	450	109	[11]

REFERENCES

- 1. Qin, Y.; Liu, Y.; Zhang, Y.; et al. Ru-substituted MnO₂ for accelerated water oxidation: The feedback of strain-induced and polymorph-dependent structural changes to the catalytic activity and mechanism. *ACS Catal.* **2023**, *13*, 256-266. DOI: 10.1021/acscatal.2c04759
- 2. Wang, P.; Zhang, S.; Wang, Z.; et al. Manganese-based oxide electrocatalysts for the oxygen evolution reaction: A review. *J. Mater. Chem.* **2023**, *11*, 5476-5494. DOI: 10.1039/D2TA09039B
- 3. Chen, Y.; Yang, S.; Liu, H.; et al. An unusual network of α-MnO₂ nanowires with structure-induced hydrophilicity and conductivity for improved electrocatalysis. *Chinese J. Catal.* **2021**, *42*, 1724-1731. DOI: 10.1016/S1872-2067(21)63793-2
- 4. Wan, S.; Li, Y.; Xu, L.; et al. Autologous mn oxides as electrocatalysts to identify the origin of the water oxidation activity. *Mater. Today Sustain.* **2022**, *17*, 100106. DOI: 10.1016/j.mtsust.2021.100106
- 5. Chowde Gowda, C.; Mathur, A.; Parui, A.; et al. Understanding the electrocatalysis OER and ORR activity of ultrathin spinel Mn₃O₄. *J. Ind. Eng. Chem.* **2022**, *113*, 153-160. DOI: 10.1016/j.jiec.2022.05.024
- 6. Qin, L.; Zhang, W.; Cao, R. Hydrophilic MnO₂ nanowires coating with ofluoroaniline for electrocatalytic water oxidation. *Chin. J. Struct. Chem.* **2023**, 42, 100105. DOI: 10.1016/j.cjsc.2023.100105
- 7. Sa, Y. J.; Kim, S.; Lee, Y.; et al. Mesoporous manganese oxides with high-valent Mn species and disordered local structures for efficient oxygen electrocatalysis. *ACS Appl. Mater. Interfaces* **2023**, *15*, 31393-31402. DOI: 10.1021/acsami.3c03358
- 8. Liu, Y.; Ma, S.; Zhang, S.; et al. Enhanced water oxidation stability and activity in MnO₂ nanosheet arrays through Ti doping. *Fuel* **2024**, *374*, 132424. DOI: 10.1016/j.fuel.2024.132424
- Bera, K.; Karmakar, A.; Karthick, K.; et al. Enhancement of the OER kinetics of the less-explored α-MnO₂ via nickel doping approaches in alkaline medium. *Inorg. Chem.* 2021, 60, 19429-19439. DOI: 10.1021/acs.inorgchem.1c03236
- Chen, Y.; Yang, S.; Wang, T.; et al. Mo-doped α-MnO₂ for enhanced electrocatalytic water oxidation. *ChemSusChem* 2025, 18, e202401553. DOI: 10.1002/cssc.202401553
- 11. Liu, X.; Yang, S.; Li, S.; et al. The doping of Al³⁺ at the tetrahedral site of spinel

 Mn_3O_4 for electrocatalytic water oxidation. Chem. Eur. J. 2025, 31, e202403720.

DOI: 10.1002/chem.202403720