## **Supplementary Materials**

Enhanced strength and ductility of high-entropy alloy via dislocation-mediated heterogeneous martensitic transformation

Feng Wang<sup>1,#</sup>, Xinglong An<sup>1,#</sup>, Zhangwei Wang<sup>1</sup>, Wenqian Wu<sup>2</sup>, Wenzhen Xia<sup>3</sup>, Song Ni<sup>1</sup>, Ji Gu<sup>1</sup>, Jianhong Yi<sup>4</sup>, Yong Yang<sup>5,6</sup>, Min Song<sup>1</sup>, Yuntian Zhu<sup>6</sup>

<sup>1</sup>State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China.

<sup>2</sup>Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

<sup>3</sup>School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China.

<sup>4</sup>School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.

<sup>5</sup>Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, China.

<sup>6</sup>Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, China.

Correspondence to: Prof. Zhangwei Wang and Prof. Min Song, State Key Laboratory of Powder Metallurgy, Central South University, No. 932 Lushan South Road, Changsha 410083, Hunan, China. E-mail: z.wang@csu.edu.cn, msong@csu.edu.cn; Prof. Yuntian Zhu, Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, No. 83 Tat Chee Avenue, Kowloon Tong 999077, Hong Kong, China. E-mail: y.zhu@cityu.edu.hk

<sup>\*</sup>Authors contributed equally.

## Strengthening contribution

In the partially recrystallized Fe<sub>40</sub>Co<sub>20</sub>Cr<sub>20</sub>Mn<sub>10</sub>Ni<sub>10</sub> (at. %) high-entropy alloys (HEAs), the yield strength ( $\sigma_y$ ) can be expressed as the sum of multiple strengthening effects of lattice friction stress ( $\sigma_0$ ), grain boundary strengthening ( $\sigma_{gr}$ ) and dislocation strengthening ( $\sigma_{dis}$ ), as follows:

$$\sigma_{v} = \sigma_{0} + \sigma_{qr} + \sigma_{dis} \tag{1}$$

By plotting the Hall-Petch relation, the contribution of  $\sigma_0$  is 140 MPa<sup>[1]</sup>. And grain boundary strengthening can be described as<sup>[2]</sup>:

$$\sigma_{ar} = f_{RX}k/\sqrt{d} + f_{NRX}k/\sqrt{d} \tag{2}$$

where  $f_{RX}=74\%$  is the volume fraction of the recrystallized regions,  $f_{NRX}=26\%$  is the volume fraction of the recrystallized regions, k=564 MPa· $\mu$ m<sup>1/2</sup> is the Hall-Petch coefficient<sup>[1]</sup>, and d=2  $\mu$ m is the grain size of the recrystallized regions. Thus, the strength provided by grain boundary is 324 MPa.

The dislocation strengthening is represented by the Taylor hardening law<sup>[3]</sup>:

$$\sigma_{dis} = M\alpha G b \sqrt{\rho_{dis}} \tag{3}$$

where M=3.06 is the Taylor factor,  $\alpha=0.2$  is a constant, G=76 GPa is the shear modulus, b=0.26 nm is the magnitude of the Burgers vector, and  $\rho_{dis}$  is the dislocation density, which can be expressed as<sup>[4]</sup>:

$$\rho_{dis} = 2\theta/\mu b \tag{4}$$

where  $\theta=0.43$  is the misorientation angle measured from kernel average misorientation maps and  $\mu=10^{-5}$  m is the unit length. Based on the calculated dislocation density of  $\rho_{dis}=3.3\times10^{14}\,\mathrm{m}^{-2}$ , the strengthening effect of dislocations  $(\sigma_{dis})$  is evaluated as 219 MPa. The theoretically predicted  $\sigma_y=683$  MPa agrees well with the measured yield strength of 684 MPa.

## **REFERENCES**

- 1. Lu, K.; Lei, Z.; Deng, S.; et al. Synergistic effects of grain sizes on the corrosion behavior and mechanical properties in a metastable high-entropy alloy. *Corros. Sci.* **2023**, *225*, 111588. DOI
- 2. Courtney, T.H., Mechanical Behavior of Materials, Waveland Press, 2005.
- 3. O. Bouaziz, Guelton, N. Modelling of TWIP effect on work-hardening. *Mater. Sci. Eng. A.* **2001**, *A319–321* 246-249. DOI
- 4. Jorge-Badiola, D.; Iza-Mendia, A., Gutiérrez, I. Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel. *Mater. Sci. Eng. A.* **2005**, *394*, 445-454. DOI