Supplementary Materials Enhanced strength and ductility of high-entropy alloy via dislocation-mediated heterogeneous martensitic transformation Feng Wang^{1,#}, Xinglong An^{1,#}, Zhangwei Wang¹, Wenqian Wu², Wenzhen Xia³, Song Ni¹, Ji Gu¹, Jianhong Yi⁴, Yong Yang^{5,6}, Min Song¹, Yuntian Zhu⁶ ¹State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China. ²Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. ³School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China. ⁴School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China. ⁵Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, China. ⁶Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, China. Correspondence to: Prof. Zhangwei Wang and Prof. Min Song, State Key Laboratory of Powder Metallurgy, Central South University, No. 932 Lushan South Road, Changsha 410083, Hunan, China. E-mail: z.wang@csu.edu.cn, msong@csu.edu.cn; Prof. Yuntian Zhu, Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, No. 83 Tat Chee Avenue, Kowloon Tong 999077, Hong Kong, China. E-mail: y.zhu@cityu.edu.hk ^{*}Authors contributed equally. ## Strengthening contribution In the partially recrystallized Fe₄₀Co₂₀Cr₂₀Mn₁₀Ni₁₀ (at. %) high-entropy alloys (HEAs), the yield strength (σ_y) can be expressed as the sum of multiple strengthening effects of lattice friction stress (σ_0), grain boundary strengthening (σ_{gr}) and dislocation strengthening (σ_{dis}), as follows: $$\sigma_{v} = \sigma_{0} + \sigma_{qr} + \sigma_{dis} \tag{1}$$ By plotting the Hall-Petch relation, the contribution of σ_0 is 140 MPa^[1]. And grain boundary strengthening can be described as^[2]: $$\sigma_{ar} = f_{RX}k/\sqrt{d} + f_{NRX}k/\sqrt{d} \tag{2}$$ where $f_{RX}=74\%$ is the volume fraction of the recrystallized regions, $f_{NRX}=26\%$ is the volume fraction of the recrystallized regions, k=564 MPa· μ m^{1/2} is the Hall-Petch coefficient^[1], and d=2 μ m is the grain size of the recrystallized regions. Thus, the strength provided by grain boundary is 324 MPa. The dislocation strengthening is represented by the Taylor hardening law^[3]: $$\sigma_{dis} = M\alpha G b \sqrt{\rho_{dis}} \tag{3}$$ where M=3.06 is the Taylor factor, $\alpha=0.2$ is a constant, G=76 GPa is the shear modulus, b=0.26 nm is the magnitude of the Burgers vector, and ρ_{dis} is the dislocation density, which can be expressed as^[4]: $$\rho_{dis} = 2\theta/\mu b \tag{4}$$ where $\theta=0.43$ is the misorientation angle measured from kernel average misorientation maps and $\mu=10^{-5}$ m is the unit length. Based on the calculated dislocation density of $\rho_{dis}=3.3\times10^{14}\,\mathrm{m}^{-2}$, the strengthening effect of dislocations (σ_{dis}) is evaluated as 219 MPa. The theoretically predicted $\sigma_y=683$ MPa agrees well with the measured yield strength of 684 MPa. ## **REFERENCES** - 1. Lu, K.; Lei, Z.; Deng, S.; et al. Synergistic effects of grain sizes on the corrosion behavior and mechanical properties in a metastable high-entropy alloy. *Corros. Sci.* **2023**, *225*, 111588. DOI - 2. Courtney, T.H., Mechanical Behavior of Materials, Waveland Press, 2005. - 3. O. Bouaziz, Guelton, N. Modelling of TWIP effect on work-hardening. *Mater. Sci. Eng. A.* **2001**, *A319–321* 246-249. DOI - 4. Jorge-Badiola, D.; Iza-Mendia, A., Gutiérrez, I. Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel. *Mater. Sci. Eng. A.* **2005**, *394*, 445-454. DOI