Manuscript Title: Associations of estimated pulse wave velocity with cardiovascular-kidney-metabolic syndrome in US adults: NHANES 1999-2018: the role of sex and ethnicity

Manuscript Author:

Shaowei Yi^{1,2,#}, Huizhen Zhao^{3,#}, Jingkuo Li⁴, Lubi Lei⁴, Qin Yu^{1,5}

¹Department of Cardiology, Dalian Medical University, Dalian 116044, Liaoning, China.

²Department of Cardiology, Jining First People's Hospital, Jining 272000, Shandong, China.

³Department of Emergency, Jining First People's Hospital, Jining 272000, Shandong, China.

⁴National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing 100037, China.

⁵Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning, China.

*These authors contributed equally to this work.

Correspondence to: Prof. Qin Yu, Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning, China. E-mail: yuqin@dlu.edu.cn

Supplementary Table 1 Definitions of CKM conditions

CKM	Definition	CKM indicators	Threshold for CKM indicators
conditions			
CVD	Individuals with clinical CVD or	Clinical CVD	History of chronic heart failure, coronary heart disease, heart
	subclinical CVD		attack, or stroke
		Subclinical CVD	Any of the following criterion is met:
			1) Very high-risk CKD in KDIGO classification: UACR ≥ 300
			mg/g and eGFR \leq 45-59 ml/min/1.73m ² , UACR \geq 30 mg/g
			and eGFR ≤ 30 -44 ml/min/1.73m ² , or eGFR ≤ 29
			ml/min/1.73m ² .
			2) Predicted 10-year CVD risk ≥ 20%
Kidney	Individuals with CKD	CKD	Moderate-to-high-risk CKD in KDIGO classification: UACR ≥
diseases			30 mg/g and eGFR $\geq 60 \text{ ml/min/1.73m}^2$, UACR $< 300 \text{ mg/g}$ and
			eGFR \leq 45-59 ml/min/1.73m ² , or UACR \leq 30 mg/g and eGFR \leq
			30-44 ml/min/1.73m ² .
Metabolic	Individuals with	Overweight/obesity	BMI ≥25 kg/m ² (or ≥23 kg/m ² if Asian ancestry) ^a
disorders	overweight/obesity, abdominal	Abdominal obesity	Waist circumference ≥88/102 cm in female/male (or if Asian
	obesity, prediabetes, diabetes,		ancestry ≥80/90 cm in female/male)
	hypertension,	Prediabetes	Fasting blood glucose ≥ 100-124 mg/dL or HbA1c ≥ 5.7%-6.4%
	hypertriglyceridemia or MetS		and without self-reported diagnosis of diabetes, use of insulin, or
			oral hypoglycemic agents

Diabetes	Fasting blood glucose ≥ 125 mg/dL or HbA1c $\geq 6.5\%$ or self-reported diagnosis of diabetes, use of insulin, or oral
	hypoglycemic agents
Hypertension	SBP ≥130 mm Hg or DBP ≥80 mm Hg or self-reported diagnosis
	of hypertension or use of antihypertensive medications
Hypertriglyceridemia	Triglycerides ≥ 135 mg/dL
MetS	MetS is defined by the presence of 3 or more of the following:
	1) Waist circumference ≥88/102 cm in female/male (or if Asian
	ancestry ≥80/90 cm in female/male).
	2) HDL cholesterol ≥50/40 mg/dL in female/male.
	3) Triglycerides ≥150 mg/dL.
	4) Elevated blood pressure (SBP ≥130 mm Hg or DBP ≥80 mm
	Hg and/or use of antihypertensive medications)
	5) Prediabetes

Abbreviations: BMI: body mass index; CKD: chronic kidney disease; CKM: cardiovascular-kidney-metabolic; CVD: cardiovascular disease; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; HDL: high-density lipoprotein; KDIGO: The Kidney Disease: Improving Global Outcomes; MetS: metabolic syndrome; SBP: systolic blood pressure; UACR: urinary albumin to creatinine ratio.

^a Asian was not listed as a separate ethnicity until NAHNES 2011-2012, therefore the uniform threshold for BMI and waist circumference was used in all participants in NHANES 1999-2010.

Supplementary Table 2 Detailed algorithm of the simplified 10-year CVD risk models

177	1 011 2 207720 + 0 7020220 × (55) /10 +
Women	$log-Odds = -3.307728 + 0.7939329 \times (age - 55) / 10 +$
	$0.0305239 \times (TC - HDL-C - 3.5) - 0.1606857 \times (HDL-C - 3.5) = 0.1606857 \times (HDL-C - 3.$
	C - 1.3 /0.3 – 0.2394003 × (min(SBP, 110) – 110) /20 +
	$0.360078 \times (max(SBP, 110) - 130) / 20 + 0.8667604 \times (if$
	diabetes) $+0.5360739 \times (if current smoker) + 0.6045917$
	\times (min(eGFR, 60) – 60) / -15 + 0.0433769 \times
	$(\max(\text{eGFR}, 60) - 90) / -15 + 0.3151672 \times (\text{if using anti-})$
	hypertensive medication) $-0.1477655 \times (if using statin)$
	- 0.0663612 × (if using anti-hypertensive medication) ×
	$(max(SBP, 110) - 130)/20 + 0.1197879 \times (if using)$
	statin) \times (TC – HDL-C – 3.5) – 0.0819715 \times (age – 55)
	$/10 \times (TC - HDL - C - 3.5) + 0.0306769 \times (age - 55) / 10$
	\times (HDL-C – 1.3) /0.3 – 0.0946348 \times (age – 55) /10 \times
	$(max(SBP, 110) - 130)/20 - 0.27057 \times (age - 55)/10 \times$
	(if diabetes) $-0.078715 \times (age - 55)/10 \times (if current$
	smoker) $-0.1637806 \times (age - 55) / 10 \times (min(eGFR, 60))$
	-60) / -15
	$\mathbf{Risk} = \exp(\log - \mathrm{Odds}) / (1 + \exp(\log - \mathrm{Odds}))$
Men	$log-Odds = -3.031168 + 0.7688528 \times (age - 55) / 10 +$
	$0.0736174 \times (TC - HDL-C - 3.5) - 0.0954431 \times (HDL-C - 3.5) = 0.0954411 \times (HDL-C - 3.5) = 0.0054411 \times (HDL-C - 3.5) = 0.005411 \times (HDL-C - 3.5) = 0.005411 \times (HDL-C - 3.5) = 0.005411 \times (HDL-C - 3.5) $
	C - 1.3) /0.3 - 0.4347345 × (min(SBP, 110) - 110) /20 +
	$0.3362658 \times (max(SBP, 110) - 130) / 20 + 0.7692857 \times$
	$(if diabetes) + 0.4386871 \times (if current smoker) +$
	$0.5378979 \times (min(eGFR, 60) - 60) / -15 + 0.0164827 \times$

 $(\max(eGFR, 60) - 90) / -15 + 0.288879 \times (if using anti-hypertensive medication) - 0.1337349 \times (if using statin) - 0.0475924 \times (if using anti-hypertensive medication) \times (\max(SBP, 110) - 130) /20 + 0.150273 \times (if using statin) \times (TC - HDL-C - 3.5) - 0.0517874 \times (age - 55) /10 \times (TC - HDL-C - 3.5) + 0.0191169 \times (age - 55) /10 \times (HDL-C - 1.3) /0.3 - 0.1049477 \times (age - 55) /10 \times (max(SBP, 110) - 130) /20 - 0.2251948 \times (age - 55) /10 \times (if diabetes) - 0.0895067 \times (age - 55) /10 \times (if current smoker) - 0.1543702 \times (age - 55) /10 \times (min(eGFR, 60) - 60) / -15$ **Risk** = $\exp(\log - Odds) / (1 + \exp(\log - Odds))$

The PREVENT equations were developed and validated for adults 30-79 years of age. As such, risk was not estimated for adults <30 years. However, to minimize underestimation of CKD Stage 3, adults ≥80 years were not excluded from 10-year CVD risk. Instead, adults ≥80 years were assigned an age of 79 years when

determining 10-year CVD risk to allow for conservative

estimates. Further, PREVENT was developed for variables with the following ranges: total cholesterol 130-320 mg/dL, HDL-C 20-100 mg/dL, systolic blood pressure 90-200 mmHg, and eGFR 14-140 mL/min/1.73m². To approximate PREVENT risk strata, values for these variables above or below these bounds were set to the upper or lower bounds of allowable values respectively (for example, total cholesterol of 330 mg/dL was set as 320 mg/dL).

Abbreviations: eGFR: estimated glomerular filtration rate; HDL: high-density lipoprotein cholesterol; SBP: systolic blood pressure; TC: total cholesterol.

Supplementary Table 3 Methods for evaluating each CKM stage

CKM stages	Definition	Criterion	Threshold for CKM conditions
Stage 0: No	Individuals with normal BMI and	All criteria are met	BMI <25 kg/m ² (or <23 kg/m ² if Asian ancestry) ^a
CKM risk	waist circumference,		Waist circumference <88/102 cm in female/male (or if Asian
factors	normoglycemia, normotension, a		ancestry <80/90 cm in female/male)
	normal lipid profile, and no		Fasting blood glucose < 100 mg/dL and HbA1c < 5.7% and
	evidence of CKD or subclinical or		without self-reported diagnosis of diabetes, use of insulin, or
	clinical CVD		oral hypoglycemic agents
			SBP <130 mm Hg and DBP <80 mm Hg without self-
			reported diagnosis of hypertension or use of antihypertensive
			medications
			HDL cholesterol <50/40 mg/dL in female/male and
			triglycerides < 150 mg/dL
			Low-risk CKD in KDIGO classification according to eGFR
			and UACR: UACR < 30 mg/g and eGFR ≥ 60
			$ml/min/1.73m^2$.
			Predicted 10-year CVD risk < 20%
			No clinical CVD
Stage 1:	Individuals with	Any of the three	Overweight/obesity
Excess or	overweight/obesity, abdominal	criteria is met	Abdominal obesity
dysfunctional	obesity, or dysfunctional adipose		Prediabetes
adiposity	tissue, without the presence of other	All criteria are met	SBP <130 mm Hg and DBP <80 mm Hg without self-

	metabolic risk factors or CKD		reported diagnosis of hypertension or use of antihypertensive
			medications
			HDL cholesterol <50/40 mg/dL in female/male and
			triglycerides < 150 mg/dL
			Low-risk CKD in KDIGO classification according to eGFR
			and UACR: UACR $< 30 \text{ mg/g}$ and eGFR ≥ 60
			$ml/min/1.73m^2$.
			Predicted 10-year CVD risk < 20%
			No clinical CVD
Stage 2:	Individuals with metabolic risk	Any of the five	Hypertriglyceridemia
Metabolic risk	factors (hypertriglyceridemia,	criteria is met	Hypertension
factors and	hypertension, MetS, diabetes), or		diabetes
CKD	CKD		MetS
			Moderate-to-high-risk CKD in KDIGO classification
		All criteria are met	No very high-risk CKD in KDIGO classification
			Predicted 10-year CVD risk < 20%
			No clinical CVD
Stage 3:	Subclinical CVD among	Any of the two criteria	Very high-risk CKD in KDIGO classification
Subclinical	individuals with	is met	Predicted 10-year CVD risk ≥ 20%
CVD in CKM	excess/dysfunctional adiposity,	Any of the eight	Overweight/obesity
	other metabolic risk factors, or	criteria is met	Abdominal obesity
	CKD		Prediabetes
			Hypertriglyceridemia
			Hypertension
			diabetes

			MetS
			Moderate-to-high-risk CKD in KDIGO classification
		The criterion is met	No clinical CVD
Stage 4:	Clinical CVD among individuals	The criterion is met	Clinical CVD
Clinical CVD	with excess/dysfunctional	Any of the nine	Overweight/obesity
in CKM	adiposity,	criteria is met	Abdominal obesity
	other metabolic risk factors, or		Prediabetes
	CKD		Hypertriglyceridemia
			Hypertension
			diabetes
			MetS
			Moderate-to-high-risk CKD in KDIGO classification
			Very high-risk CKD in KDIGO classification

Abbreviations: BMI: body mass index; CKD: chronic kidney disease; CKM: cardiovascular-kidney-metabolic; CVD: cardiovascular disease; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; HDL: high-density lipoprotein; KDIGO: The Kidney Disease: Improving Global Outcomes; SBP: systolic blood pressure; UACR: urinary albumin to creatinine ratio.

^a Asian was not listed as a separate ethnicity until NAHNES 2011-2012, therefore the uniform threshold for BMI and waist circumference was used in all participants in NHANES 1999-2010.

eTable 4. The percentages of participants with missing covariates in study sample (N=21,397)

Variables	N	%
Poverty to income ratio	1833	8.6
Education	23	0.1
Employment	12	0.1
Alcohol drinking	1176	5.5
Physical activity	8	0.0
HEI-2010 score	781	3.7

Abbreviations: HEI: healthy eating index

Supplementary Table 5. Baseline characteristics of eligible participants who had complete information about ePWV or CKM stages and who did not

Characteristic ^a	Overall N = 23,839	Non-completed $N = 2,442$	Completed N = 21,397	P value
Age (year)	50.16 (18.10)	53.98 (19.75)	49.73 (17.85)	<0.001
Female %	12,255 (51.4)	1,367 (56.0)	10,888 (50.9)	< 0.001
Ethnicity %				< 0.001
Non-Hispanic White	10,614 (44.5)	983 (40.3)	9,631 (45.0)	
Non-Hispanic Black	4,808 (20.2)	607 (24.9)	4,201 (19.6)	
Mexican	4,191 (17.6)	387 (15.9)	3,804 (17.8)	
Other Hispanic	2,023 (8.5)	200 (8.2)	1,823 (8.5)	
Other ^b	2,203 (9.2)	265 (10.9)	265 (10.9) 1,938 (9.1)	

Income level %				< 0.001
Low	6,608 (27.7)	873 (35.7)	5,735 (26.8)	
Medium	11,624 (48.8)	1,171 (48.0)	10,453 (48.9)	
High	5,607 (23.5)	398 (16.3)	5,209 (24.3)	
Education level %				< 0.001
Low	6,528 (27.4)	812 (33.4)	5,716 (26.7)	
Medium	5,463 (22.9)	556 (22.9)	4,907 (23.0)	
High	11,813 (49.6)	1,062 (43.7)	10,751 (50.3)	
Missing	35	12	23	
Employment %				< 0.001
Unemployment	5,366 (22.5)	698 (28.6)	4,668 (21.8)	
Employment	18,460 (77.5)	1,743 (71.4)	16,717 (78.2)	
Missing	13	1	12	
Smoking %				0.351
Never	12,834 (53.8)	1,347 (55.2)	11,487 (53.7)	
	, , ,	1,547 (55.2)	,, (,	
Former	6,042 (25.3)	608 (24.9)	5,434 (25.4)	
Former Current	, ,	, ,	, ,	
	6,042 (25.3)	608 (24.9)	5,434 (25.4)	<0.001
Current Alcohol	6,042 (25.3)	608 (24.9)	5,434 (25.4)	<0.001
Current Alcohol drinking %	6,042 (25.3) 4,962 (20.8)	608 (24.9) 487 (19.9)	5,434 (25.4) 4,475 (20.9)	<0.001
Current Alcohol drinking % Never	6,042 (25.3) 4,962 (20.8) 3,098 (14.1)	608 (24.9) 487 (19.9) 355 (20.6)	5,434 (25.4) 4,475 (20.9) 2,743 (13.6)	<0.001
Current Alcohol drinking % Never Former	6,042 (25.3) 4,962 (20.8) 3,098 (14.1) 3,454 (15.7)	608 (24.9) 487 (19.9) 355 (20.6) 317 (18.4)	5,434 (25.4) 4,475 (20.9) 2,743 (13.6) 3,137 (15.5)	<0.001
Current Alcohol drinking % Never Former Current	6,042 (25.3) 4,962 (20.8) 3,098 (14.1) 3,454 (15.7) 15,392 (70.1)	608 (24.9) 487 (19.9) 355 (20.6) 317 (18.4) 1,051 (61.0)	5,434 (25.4) 4,475 (20.9) 2,743 (13.6) 3,137 (15.5) 14,341 (70.9)	<0.001

Active	11,915 (50.0)	914 (37.4)	11,001 (51.4)	
Missing	8	0	8	
HEI-2010 score	51.78 (14.47)	51.87 (14.25)	51.77 (14.49)	< 0.001
Missing	1,325	544	781	
BMI (kg/m²)	28.90 (6.79)	29.85 (8.87)	28.81 (6.55)	0.031
Missing	383	383	0	
HbA1c (%)	5.73 (1.09)	5.85 (1.19)	5.72 (1.08)	< 0.001
Missing	42	42	0	
TC (mg/dl)	195.06 (42.52)	192.68 (43.09)	195.30 (42.45)	0.002
Missing	269	269	0	
HDL-C (mg/dl)	53.64 (16.18)	54.03 (17.65)	53.60 (16.03)	0.981
Missing	269	269	0	
eGFR (mL/min/1.73 m ²)	94.63 (22.76	90.55 (26.86)	95.03 (22.28)	<0.001
Missing	325	325	0	
Cancer %	2,202 (9.2)	272 (11.1)	1,930 (9.0)	< 0.001
Liver diseases %	949 (4.0)	101 (4.1)	848 (4.0)	0.679
Lung diseases %	499 (2.1)	83 (3.4)	416 (1.9)	< 0.001

Abbreviations: BMI: body mass index; eGFR: estimated glomerular filtration rate;

HbA1c: glycated hemoglobin; HDL-C: high density lipoprotein cholesterol; HEI:

healthy eating index; TC: total cholesterol.

^a We did not weight the estimates. Data were expressed as mean (standard deviation) or frequency (percentage) when appropriate.

^b Including Asian and multiracial.

Supplementary Table 6 Weighted prevalence of combinations of CKM conditions in overall participants and according to ePWV subgroups

	No. (%) ^a		
Combinations of CKM conditions ^b	Overall	ePWV < 10	ePWV \geq 10
Combinations of CKW conditions		m/s	m/s
None	1,970 (11.7)	1,937 (14.1)	33 (0.9)
Only CVD	31 (0.1)	18 (0.1)	13 (0.2)
Only CKD	114 (0.6)	110 (0.8)	4 (0.1)
Only MD	13,692 (68.2)	11,804 (74.4)	1,888 (39.9)
CVD + CKD	9 (0.0)	0 (0.0)	9 (0.1)
CVD + MD	2,544 (8.8)	842 (4.3)	1,702 (29.4)
CKD + MD	1,521 (6.0)	1,048 (5.4)	473 (9.2)
CVD + CKD + MD	1,516 (4.4)	232 (1.0)	1,284 (20.1)

Abbreviations: CKD: chronic kidney disease; CKM: cardiovascular-kidney-metabolic; CVD: cardiovascular diseases; MD: metabolic disorders.

Supplementary Table 7 The associations of ePWV (in continuous, 1 m/s increase) with CKM stages in participants with complete covariates data (N=18149)

Unadjusted		Adjusted ^a		Adjusted ^b		Adjusted ^c	
OR (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	
Reference		Reference		Reference		Reference	
1.74 (1.56, 1.94)	< 0.001	1.77 (1.58, 1.97)	< 0.001	1.72 (1.54, 1.91)	< 0.001	1.52 (1.35, 1.7	
3.26 (2.94, 3.63)	< 0.001	3.42 (3.09, 3.80)	< 0.001	3.44 (3.10, 3.82)	< 0.001	3.10 (2.75, 3.4	

^a Data were weighted estimates and expressed as frequency (weighted percentage).

^b CKM conditions include CVD (i.e., clinical or subclinical CVD), kidney diseases (i.e., CKD) and metabolic disorders (i.e., overweight/obesity, abdominal obesity, prediabetes, diabetes, hypertension, hypertriglyceridemia or MetS).

9.22 (8.21, 10.36)	< 0.001	10.00 (8.89, 11.24)	< 0.001	10.14 (8.99, 11.44)	< 0.001	8.32 (7.23, 9.5
5.51 (4.91, 6.17)	< 0.001	5.91 (5.29, 6.61)	< 0.001	5.95 (5.31, 6.66)	< 0.001	4.62 (4.06, 5.2

Abbreviations: CI: confidence interval; CKM: cardiovascular-kidney-metabolic; OR: odds ratio.

Supplementary Table 8 The associations of ePWV (in continuous, 1 m/s increase) with numbers of CKM conditions

1	Unadjusted		Adjusted ^a		Adjusted ^b		Adjusted ^c	
	OR (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	
	Reference		Reference		Reference		Reference	
	2.55 (2.34, 2.79)	< 0.001	2.63 (2.41, 2.87)	< 0.001	2.61 (2.39, 2.84)	< 0.001	2.17 (1.98, 2.3	
	4.33 (3.95, 4.75)	< 0.001	4.57 (4.17, 5.01)	< 0.001	4.55 (4.15, 4.99)	< 0.001	3.34 (3.02, 3.7	
	6.51 (5.92, 7.16)	< 0.001	6.87 (6.25, 7.55)	< 0.001	6.83 (6.22, 7.49)	< 0.001	4.81 (4.34, 5.3	

Abbreviations: CI: confidence interval; CKM: cardiovascular-kidney-metabolic; OR: odds ratio.

^a Models were adjusted for socio-demographic covariates, including sex (male, female), ethnicity (non-Hispanic white, non-Hispanic black, Mexican, other Hispanic, other), and SES levels (poor, medium, good).

^b Models were adjusted for socio-demographic covariates and lifestyle covariates: self-reported smoking (current smoker, former smoker, never smoker), self-reported alcohol drinking (current drinker, former drinker, never drinker), self-reported physical activity (inactive, active), and diet quality (HEI-2010 score, continuous).

^c Models were adjusted for socio-demographic covariates, lifestyle covariates and CKM risk factors: BMI, HbA1c, TC, HDL-C, eGFR, self-reported cancer (yes, no), self-reported liver diseases (yes, no), and self-reported lung diseases (yes, no).

^a Models were adjusted for socio-demographic covariates, including sex (male,

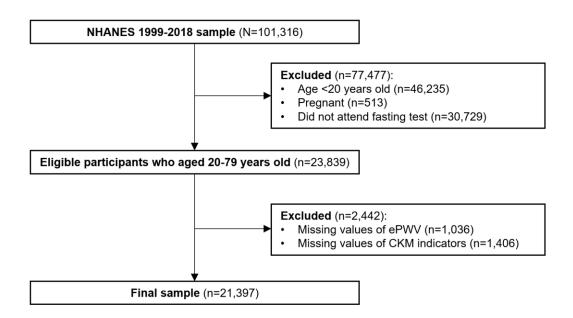
female), ethnicity (non-Hispanic white, non-Hispanic black, Mexican, other Hispanic, other), and SES levels (poor, medium, good).

Supplementary Table 9 The associations of ePWV (in continuous, 1 m/s increase) with combinations of CKM conditions

of	Unadjusted		Adjusted ^a		Adjusted ^b		Adjusted ^c	
d								
	OR (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	
	Reference		Reference		Reference		Reference	
	3.86 (3.05, 4.89)	< 0.001	4.06 (3.20, 5.15)	< 0.001	4.04 (3.03, 5.37)	< 0.001	2.64 (1.97, 3.5	
	0.97 (0.74, 1.26)	0.802	1.07 (0.83, 1.38)	0.594	1.10 (0.86, 1.42)	0.439	1.04 (0.82, 1.3	
	2.59 (2.37, 2.84)	< 0.001	2.67 (2.45, 2.92)	< 0.001	2.65 (2.43, 2.89)	< 0.001	2.25 (2.05, 2.4	
	8.33 (7.32, 9.48)	< 0.001	9.07 (8.12, 10.13)	< 0.001	8.69 (7.73, 9.78)	< 0.001	6.65 (4.82, 9.	
	5.20 (4.73, 5.72)	< 0.001	5.53 (5.03, 6.08)	< 0.001	5.54 (5.04, 6.10)	< 0.001	4.13 (3.72, 4.5	
	3.51 (3.18, 3.86)	< 0.001	3.70 (3.37, 4.08)	< 0.001	3.70 (3.36, 4.07)	< 0.001	2.83 (2.53, 3.	
+								
	6.85 (6.22, 7.56)	< 0.001	7.27 (6.60, 8.01)	< 0.001	7.25 (6.59, 7.97)	< 0.001	5.30 (4.78, 5.	

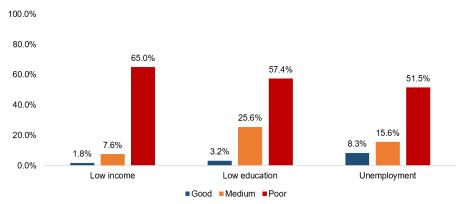
b Models were adjusted for socio-demographic covariates and lifestyle covariates: self-reported smoking (current smoker, former smoker, never smoker), self-reported alcohol drinking (current drinker, former drinker, never drinker), self-reported physical activity (inactive, active), and diet quality (HEI-2010 score, continuous).

c Models were adjusted for socio-demographic covariates, lifestyle covariates and CKM risk factors: BMI, HbA1c, TC, HDL-C, eGFR, self-reported cancer (yes, no), self-reported liver diseases (yes, no), and self-reported lung diseases (yes, no).

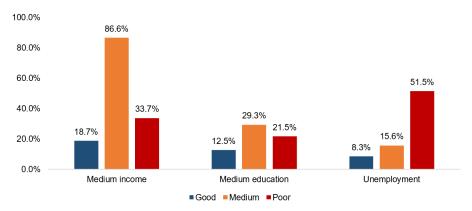

d CKM conditions include CVD (i.e., clinical or subclinical CVD), kidney diseases (i.e., CKD) and metabolic disorders (i.e., overweight/obesity, abdominal obesity, prediabetes, diabetes, hypertension, hypertriglyceridemia or MetS).

Abbreviations: CKD: chronic kidney disease; CI: confidence interval; CKM: cardiovascular-kidney-metabolic; CVD: cardiovascular diseases; MD: metabolic disorders; OR: odds ratio.

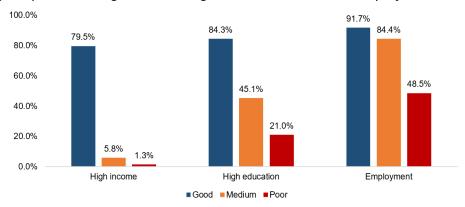
- ^a Models were adjusted for socio-demographic covariates, including sex (male, female), ethnicity (non-Hispanic white, non-Hispanic black, Mexican, other Hispanic, other), and SES levels (poor, medium, good).
- b Models were adjusted for socio-demographic covariates and lifestyle covariates: self-reported smoking (current smoker, former smoker, never smoker), self-reported alcohol drinking (current drinker, former drinker, never drinker), self-reported physical activity (inactive, active), and diet quality (HEI-2010 score, continuous).
 c Models were adjusted for socio-demographic covariates, lifestyle covariates and CKM risk factors: BMI, HbA1c, TC, HDL-C, eGFR, self-reported cancer (yes, no), self-reported liver diseases (yes, no), and self-reported lung diseases (yes, no).
 d CKM conditions include CVD (i.e., clinical or subclinical CVD), kidney diseases (i.e., CKD) and metabolic disorders (i.e., overweight/obesity, abdominal obesity,


prediabetes, diabetes, hypertension, hypertriglyceridemia or MetS).

Supplementary Figure:

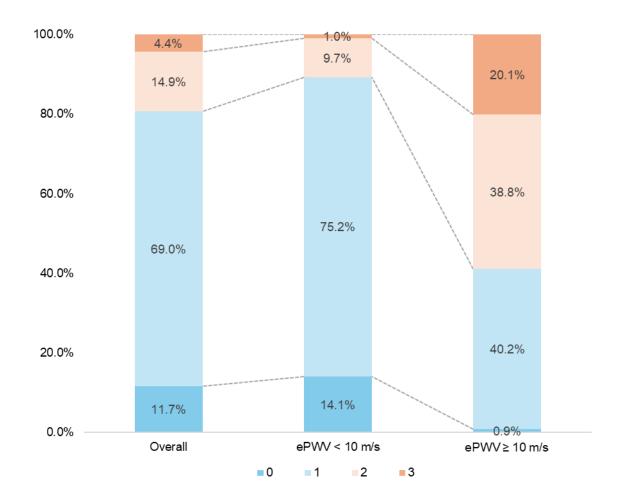


Supplementary Figure 1. Flowchart of study design. CKM: cardiovascular-kidney-metabolic; NHANES: National Health and Nutrition Examination Survey; ePWV: estimated pulse wave velocity.


(A) Proportion of low income, low education level and unemployment

(B) Proportion of medium income, medium education level and unemployment

(C) Proportion of high income, high education level and employment



eFigure 2. Item-related proportion of each socioeconomic latent class

(A) Proportion of low income, low education level and unemployment in three socioeconomic latent class: good (color in blue), medium (color in orange), poor (color in red); (B) Proportion of medium income, medium education level and unemployment in three socioeconomic latent class: good (color in blue), medium (color in orange), poor (color in red); (C) Proportion of high income, high education

level and employment in three socioeconomic latent class: good (color in blue), medium (color in orange), poor (color in red).

Income levels were categorized into three levels according to the poverty to income ratio: low (\leq 1), medium (1-4), and high (\geq 4); education levels were categorized into less than high school diploma (low), high school graduate or equivalent (medium), and college or above (high); Employment was categorized into two groups: unemployment and employment (including retirees and students).

eFigure 3. Weighted prevalence of numbers of CKM conditions in overall participants and according to ePWV subgroups

Abbreviations: CKM: cardiovascular-kidney-metabolic; ePWV: estimated pulse wave velocity. CKM conditions include CVD (i.e., clinical or subclinical CVD), kidney diseases (i.e., CKD) and metabolic disorders (i.e., overweight/obesity, abdominal obesity, prediabetes, diabetes, hypertension, hypertriglyceridemia or MetS).