Supplementary Materials

Intense pulsed light-induced selective conversion of printed silicon nanoparticles into graphene embedding silicon carbide on plastic for the next generation flexible lithium-ion batteries

Jawad Reslan¹, Omar Kassem^{1,2}, Vincent Barnier², Sergio Sao-joao², Florence Vacandio³, Mohamed Saadaoui¹, Thierry Djenizian^{1,4}

¹Department of Flexible Electronics, Mines Saint-Etienne, Center of Microelectronics in Provence, Gardanne F - 13541, France.
²Mines Saint-Etienne, Université de Lyon, CNRS, UMR 5307 LGF, Centre SPIN, Saint-Etienne F-42023, France.
³Aix Marseille Université, CNRS, MADIREL, UMR 7246, Marseille 13397, France.
⁴Al-Farabi Kazakh National University, Center of Physical-Chemical Methods of Research and Analysis, Almaty 050040,, Kazakhstan.

*Correspondence to: Prof. Thierry Djenizian, Department of Flexible Electronics, Mines Saint-Etienne, Center of Microelectronics in Provence, 880 Rte de Mimet, Gardanne F - 13541, France. E-mail: thierry.djenizian@emse.fr

Upilex Si ρ [Kg/m³] 1470 2,200 к [W/m.K] 0.29 0.07 (T<T_{melt}) and 19.0±0.9 (T>T_{melt}) Cp [J/kg.K] 1130 736 Thickness (µm) 50 0.03 Emissivity 0.95 0.04

Table S1. Thermal properties of Upilex and Si

Table S2. Si-based lithium-ion battery anodes

Anode materials	Method used	Initial discharge [mAh g ⁻¹]/Current density[A g ⁻¹]	Capacity/Cycles/Current density [mAh g ⁻¹]/–/[A g ⁻¹]	ICE [%]	Ref
Si thin films	Magnetron sputtering	3134 at 0.025C	1317/500 at 0.5C	87	[1]
Si/C	Chemical synthesis	1157/0.05	452 /50/0.05	76.3	[2]
Si NPs	Ball milling	3075/0.05	804/400/1	84.5	[3]
Si NPs	Ball milling	3250/ 0.48	1600/600/0.48	81	[4]
Si NPs	Ball milling	2196/0.1	1480/100/0.1	67.3	[5]
S/C	CVD	1950/ 0.0975	1500/100/1.95	86	[6]

Si NPs/SiO2	ball milling	805.57/0.2	704.79/500/0.2	88	[7]
Si NWs	CVD	1300/0.85	1060/100/0.85	86.2	[8]
Si/MWCN Ts	Magnesiothermic reduction	1586/0.2	1038/170/0.2	48.3	[9]
Si NSs	DC-arc discharge	2553/0.1	441.7/40/0.1	49	[10]
Si NSs	liquid oxidation and exfoliation	1375/0.1	596/1800/1	61.6	[11]
Si NTs	Electrospinning/CVD	650 at 12C	570/6000 at 12C	76	[12]
Si HSs	CVD	2725 at 0.1 C	1420/700 at 0.5C	77	[13]
Mesoporou s Si	Magnesiothermic reduction	4819/0.05	1004/50/0.05	64.2	[14]

Porous Si membrane	HCl-leaching and water-rinsing	3420/0.1	1220.2/100/1	71.8	[15]
Ag coated Si	Reduction of mesporous SiO ₂	2416/0.1	1600/100/0.1	73.7	[16]
Si/C	Magnesiohermic reduction of rice husk	2790/0.084	1500/300/2.1	70	[17]
Si/C	Magnesiothermic reduction of diatomite	1826/0.05	240/30/0.05	68.5	[18]
SiC@G	Inkjet printing + IPL	2050/1	1856/200/1	59.2	This work

Figure S1. SEM images of inkjet-printed Si films: (a, b) as-deposited, showing a homogeneous and dense nanoparticle layer, (c, d) after intense pulsed light treatment.

Figure S2. Optical images demonstrating the mechanical flexibility of the inkjetprinted SiC electrode.

Figure S3. Cycling behavior of the pristine Si electrode before IPL treatment

REFERENCES

- (1) L. B. Chen, J. Y. Xie, H. C. Yu, T. H. Wang, J. Appl. Electrochem. 2009, 39, 1157.
- [2] L. Ji, X. Zhang, Carbon 2009, 47, 3219.
- [3] D.-L. Fang, Y.-C. Zhao, S.-S. Wang, T.-S. Hu, C.-H. Zheng, *Electrochimica Acta* 2020, 330, 135346.
- [4] M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, L. Roué, *Energy Environ. Sci.* 2013, 6, 2145.
- [5] Si nanoplates prepared by ball milling photovoltaic silicon sawdust waste as lithium-ion batteries anode material, *Mater. Lett.* 2023, *331*, 133469.
- [6] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater. 2010, 9, 353.
- [7] S. Liu, W. Tao, Y. Yu, S. Fakudze, C. Wang, J. Wang, J. Han, J. Chen, Colloids Surf. Physicochem. Eng. Asp. 2022, 654, 130088.
- [8] L. Cui, R. Ruffo, C. K. Chan, H. Peng, Y. Cui, ECS Meet. Abstr. 2009, MA2009-01, 197.
- [9] Y. Zhou, X. Jiang, L. Chen, J. Yue, H. Xu, J. Yang, Y. Qian, *Electrochimica Acta* 2014, 127, 252.
- [10] X. Yu, F. Xue, H. Huang, C. Liu, J. Yu, Y. Sun, X. Dong, G. Cao, Y. Jung, *Nanoscale* 2014, 6, 6860.

- [11] J. Liu, Y. Yang, P. Lyu, P. Nachtigall, Y. Xu, *Adv. Mater.* **2018**, *30*, 1800838.
- [12] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, *Nat. Nanotechnol.* 2012, *7*, 310.
- [13] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, Y. Cui, *Nano Lett.* 2011, 11, 2949.
- [14] W. Chen, Z. Fan, A. Dhanabalan, C. Chen, C. Wang, J. Electrochem. Soc. 2011, 158, A1055.
- [15] A. Xing, S. Tian, H. Tang, D. Losic, Z. Bao, *RSC Adv.* 2013, *3*, 10145.
- [16] Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. Van Aken, J. Maier, *Adv. Mater.* 2010, *22*, 2247.
- [17] L. Shen, X. Guo, X. Fang, Z. Wang, L. Chen, J. Power Sources 2012, 213, 229.
- [18] M.-S. Wang, L.-Z. Fan, M. Huang, J. Li, X. Qu, J. Power Sources 2012, 219, 29.