Supplementary Materials

Triboelectric discharge based self-powered wireless sensing system for smart home application

Bin Xie¹, Siming Lin¹, Yuanhui Guo², Yun Chen^{1,*}, Maoxiang Hou¹, Xin Chen¹, Chingping Wong³

¹State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.

²School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510450, Guangdong, China.

³School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

*Correspondence to: Prof. Yun Chen, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China. E-mail: chenyun@gdut.edu.cn

List:

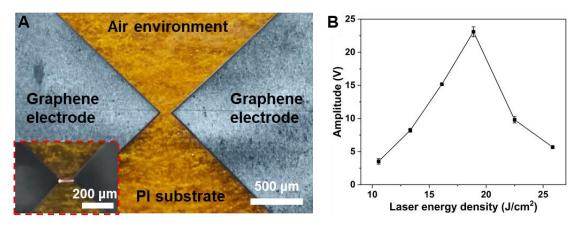
Supplementary Figure 1. Discharge phenomena and influencing factors.

Supplementary Figure 2. Testing of maximum transmission distance, rotation degree and interference.

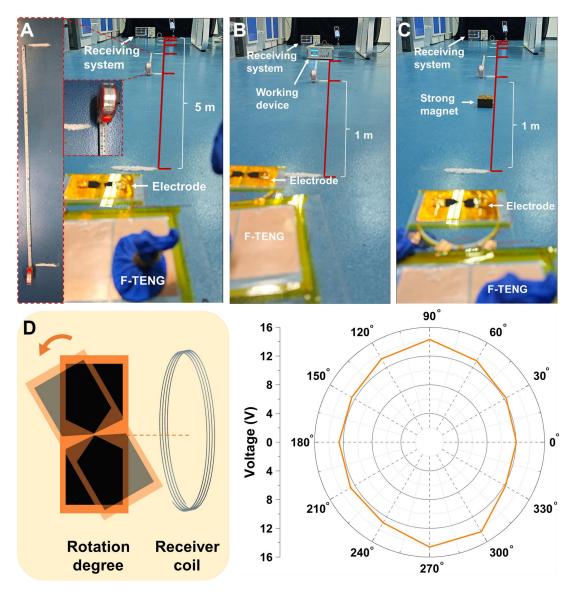
Supplementary Figure 3. Time-domain and frequency-domain responses under dust conditions.

Supplementary Figure 4. Schematic and optical image of multiple SWSS units.

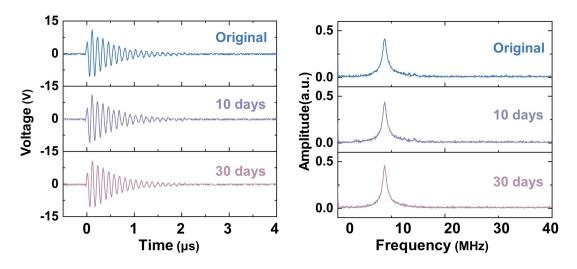
Supplementary Figure 5. Optical image of a reduced-scale model simulating a smart home.

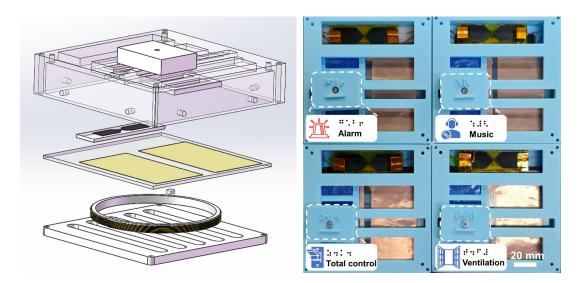

Supplementary Figure 6. Cyclic stability test of SWSS systems.

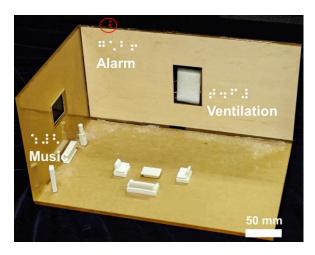
Supplementary Table 1. The comparison of the graphene-based SWSS with existing wireless sensing.

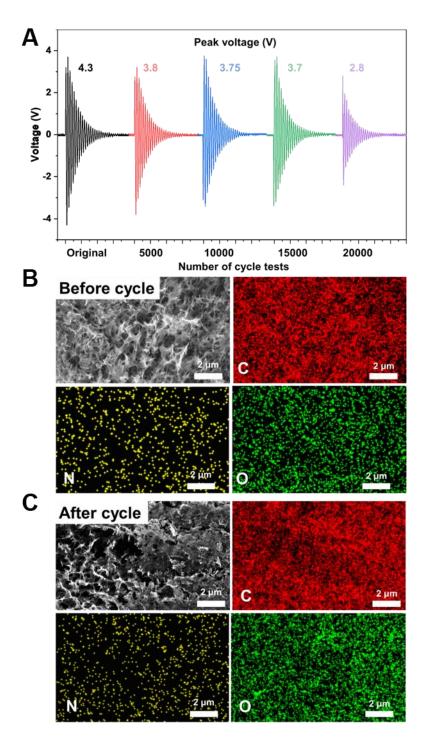

Supplementary Table 2. Comparison of the SWSS with similar self-powered wireless sensor systems.

Supplementary Video 1. Testing of maximum transmission distance and interference.


Supplementary Video 2. Utilization of SWSSs in a demonstration of smart home control applications.


Supplementary Figure 1. Discharge phenomena and influencing factors. (A) Optical image of the tip electrode; the inset is an optical image of the spark generated by the triboelectric discharge; (B) The influence of laser energy density on discharge performance.


Supplementary Figure 2. Testing of maximum transmission distance, rotation degree and interference. (A) Optical image depicting a transmission distance of 5 meters; (B) Assessment of transmission interference with an operational device; (C) Evaluation of transmission interference in the presence of a strong magnet. (D) The relationship between the received signal's voltage and the receiver coil's rotation degree.


Supplementary Figure 3. Time-domain and frequency-domain responses under dust conditions.

Supplementary Figure 4. Schematic and optical image of multiple SWSS units.

Supplementary Figure 5. Optical image of a reduced-scale model simulating a smart home.

Supplementary Figure 6. Cyclic stability test of SWSS systems. (A) Cyclic durability testing of SWSS systems; (B) EDS test results before the cycle of the tip electrode; and (C) EDS test results after the cycle of the tip electrode.

Supplementary Table 1. The comparison of the graphene-based SWSS with existing wireless sensing

Reference	Electrode manufacturing	Signal strength	Electrode
	process	(@distance)	material
[1]	scalpel cutting	≈1 V (50 cm)	Cu
[2]	Electron beam evaporation	≈1 V (30 cm)	Cr/Cu
[3]	Attached	4.26 V (20 cm)	aluminum foil
[4]	Attached	≈0.1 V (8 cm)	Cu
[5]	Attached	0.8 V (20 cm)	Copper foils
[6]	UV lithography	≈1.5 V (50 cm) Au	
[7]	laser cutter	≈2 V (20 cm)	Copper foil
This work	Laser induced graphene	17.5 V (20 cm)	Graphene

Supplementary Table 2. Comparison of the SWSS with similar self-powered wireless sensor systems

Reference	Wireless transmission method	Transmission distance (m)	Energy requirement
[8]	Breakdown discharge	0.15	Contact-Separation TENG
[4]	Breakdown discharge	0.1	Contact-Separation TENG
[9]	Breakdown discharge	5	Contact-Separation TENG
[1]	Breakdown discharge	12	3.7 V Lithium-ion battery
[7]	Breakdown discharge	4	Freestanding triboelectric layer mode
This work	Breakdown discharge	5	Freestanding triboelectric layer mode

REFERENCE

- Si, J.; Han, L.; Wang, R.; Wu, C.; Guo, M.; Li, J. Long-Distance Multifunctional Wireless Sensing Platform for Identifying and Ranging. *Nano Energy*. 2023, 109, 9. DOI: 10.1016/j.nanoen.2023.108267.
- Wang, H.; Wang, J.; Yao, K.; Fu, J.; Xia, X.; Zhang, R.; Li, J.; Xu, G.; Wang, L.; Yang, J.; Lai, J.; Dai, Y.; Zhang, Z.; Li, A.; Zhu, Y.; Yu, X.; Wang, Z. L.; Zi, Y. A Paradigm Shift Fully Self-Powered Long-Distance Wireless Sensing Solution Enabled by Discharge-Induced Displacement Current. *Sci. Adv.* 2021, 7(39), 9. DOI: 10.1126/sciadv.abi6751.
- 3. Liu, S.; An, S.; Zhou, X.; Wang, J.; Pu, X. A Self-Powered, Process-Oriented Wireless Sensor with High Discharge Signal Density. *Device*. **2024**, *2*(9), 9. DOI: 10.1016/j.device.2024.100437.
- 4. Si, J.; Yang, J.; Wang, R.; Wang, K.; Wang, Z.; Wu, B.; Li, M.; Nie, M.; Han, L. Self-Powered Wireless Sensing System Based On Triboelectric-Discharge Effect. *IEEE Trans. Electron Devices.* **2024**, *71*(6), 3874-3879. DOI: 10.1109/TED.2024.3392182.
- 5. Yi, J.; Liu, S.; Gao, Z.; Wu, S.; Ji, H.; Hou, J.; Jiang, G.; Sun, X.; Wen, Z. A Battery-Free Wireless Sensor for Encrypted Signal Transmission Via Maxwell's Displacement Current. *Microsystems & Nanoengineering*. **2025**, *11*(1), 11. DOI: 10.1038/s41378-025-00987-3.
- 6. Nie, C.; Lin, C.; Li, B.; Chen, F.; Guo, H.; Li, J.; Liang, L.; Wang, Y.; Wu, Y.; Zheng, H. A Novel E-Sticker Based On Triboelectric Nanogenerators for Wireless Passive Communication. *Adv. Funct. Mater.* **2025**, *35*(32), 13. DOI: 10.1002/adfm.202425965.
- 7. Liu, L.; Zhao, X.; Hu, T.; Liang, F.; Guo, B.; Tao, K. Deep-Learning-Assisted Self-Powered Wireless Environmental Monitoring System Based On Triboelectric Nanogenerators with Multiple Sensing Capabilities. *Nano Energy*. **2024**, *132*, 13. DOI: 10.1016/j.nanoen.2024.110301.
- 8. Si, J.; Yang, J.; Sun, D.; Li, M.; Wang, Z.; Wang, K.; Wang, R.; Han, L. Breakdown Discharge Effect Enabled Self-Powered Multi-Mechanism Wireless Sensing Scheme. *Nano Energy*. **2025**, *135*, 11. DOI: 10.1016/j.nanoen.2025.110671.
- 9. Zhang, C.; Chen, J.; Zhou, Y.; Zhang, C.; Chang, S.; Xuan, W.; Jin, H.; Dong, S.; Luo, J. A Battery-Less Self-Powered Dual-Parameter Omnidirectional Wireless Sensing System Based On Symmetrical Resonant Circuit. *Nano Energy*. **2024**, *125*, 9. DOI: 10.1016/j.nanoen.2024.109536.