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Supplementary Figure 1. Process Flow of graphene-based hall sensor.

Supplementary Figure 2. (A) SEM image of the graphene-based Hall sensor; (B)

Raman characterization results of graphene.



Supplementary Figure 3. EDS analysis results of the magnetic film: (A) SEM image;

(B) EDS spectrum; (C and D) show the distribution of Fe, and Nd, respectively.

Supplementary Figure 4. Parylene-C deposition results.



Supplementary Figure 5. Fabrication of magnetic films.

Supplementary Figure 6. Test system.



Supplementary Figure 7. Comparison of z-axis magnetic field simulations at different

heights for different thicknesses of magnetic films. (A) h1 = 0.1 mm. (B) h2 = 0.5 mm.

(C) h3 = 2 mm. (D) h4 = 5 mm.

Supplementary Figure 8. Test results of z-axis magnetic field for (A) different

thicknesses and (B) different mass fractions of magnetic films.



Supplementary Figure 9. Output comparison of pressing C1-C4.

Supplementary Table 1. Judgmental conditions for press C1-C4

Condition Result

|∆VH3|>|∆VHi,i=1,2,4−9|, |∆VH2|>Vℎ3, |∆VHj,j=1,4−9|<Vℎ3 C1

|∆VH3|>|∆VHi,i=1,2,4−9|, |∆VHj,j=1,2,4−9|<Vℎ3 C2

|∆VH3|>|∆VHi,i=1,2,4−9|, |∆VH2|>Vℎ3, |∆VH6|>Vℎ3, |∆VHj,j=1,4,5,7−9|<Vℎ3 C3

|∆VH3|>|∆VHi,i=1,2,4−9|, |∆VH6|>Vℎ3, |∆VHj,j=1,2,4,5,7−9|<Vℎ3 C4

Supplementary Table 2. Judgmental conditions for press C1-C4

Condition Result

|∆VH7|>|∆VHi,i=1−6,8−9|, |∆VH4|>Vℎ7, |∆VHj,j=1−3,5,6,8,9|<Vℎ7 G1

|∆VH7|>|∆VHi,i=1−6,8−9|, |∆VH4|>Vℎ7, |∆VH8|>Vℎ7, |∆VHj,j=1−3,5,6,9|<Vℎ7 G2

|∆VH7|>|∆VHi,i=1−6,8−9|, |∆VHj,j=1−6,8−9|<Vℎ7 G3

|∆VH7|>|∆VHi,i=1−6,8−9|, |∆VH8|>Vℎ7, |∆VHj,j=1−6,9|<Vℎ7 G4



Supplementary Figure 10. Output comparison of pressing G1-G4.

Supplementary Figure 11. Output comparison of pressing I1-I4.



Supplementary Table 3. Judgmental conditions for press I1-I4

Condition Result

|∆VH9|>|∆VHi,i=1−8|, |∆VH6|>Vℎ9, |∆VH8|>Vℎ9, |∆VHj,j=1−5,7|<Vℎ9 I1

|∆VH9|>|∆VHi,i=1−8|, |∆VH6|>Vℎ9, |∆VHj,j=1−5,7,8|<Vℎ9 I2

|∆VH9|>|∆VHi,i=1−8|, |∆VH8|>Vℎ9, |∆VHj,j=1−7|<Vℎ9 I3

|∆VH9|>|∆VHi,i=1−8|, |∆VHj,j=1−8|<Vℎ9 I4

Supplementary Table 4. Judgmental conditions for press D1-D4

Condition Result

|∆VH4|>|∆VHi,i=1−3,5−9|, |∆VH1|>Vℎ4, |∆VHj,j=2,3,5−9|<Vℎ4 D1

|∆VH4|>|∆VHi,i=1−3,5−9|, |∆VH1|>Vℎ4, |∆VH5|>Vℎ4, |∆VHj,j=2,3,6−9|<Vℎ4 D2

|∆VH4|>|∆VHi,i=1−3,5−9|, |∆VH7|>Vℎ4, |∆VHj,j=1−3,5,6,8,9|<Vℎ4 D3

|∆VH4|>|∆VHi,i=1−3,5−9|, |∆VH5|>Vℎ4, |∆VH7|>Vℎ4, |∆VHj,j=1−3,6,8,9|<Vℎ4 D4

Supplementary Table 5. Judgmental conditions for press F1-F4

Condition Result

|∆VH6|>|∆VHi,i=1−5,7−9|, |∆VH3|>Vℎ6, |∆VH5|>Vℎ6, |∆VHj,j=1,2,4,7−9|<Vℎ6 F1

|∆VH6|>|∆VHi,i=1−5,7−9|, |∆VH3|>Vℎ6, |∆VHj,j=1,2,4,5,7−9|<Vℎ6 F2

|∆VH6|>|∆VHi,i=1−5,7−9|, |∆VH5|>Vℎ6, |∆VH9|>Vℎ6, |∆VHj,j=1−4,7,8|<Vℎ6 F3

|∆VH6|>|∆VHi,i=1−5,7−9|, |∆VH9|>Vℎ6, |∆VHj,j=1−5,7,8|<Vℎ6 F4



Supplementary Table 6. Judgmental conditions for press H1-H4

Condition Result

|∆VH8|>|∆VHi,i=1−7,9|, |∆VH5|>Vℎ8, |∆VH7|>Vℎ8, |∆VHj,j=1−4,6,9|<Vℎ8 H1

|∆VH8|>|∆VHi,i=1−7,9|, |∆VH5|>Vℎ8, |∆VH9|>Vℎ8, |∆VHj,j=1−4,6,7|<Vℎ8 H2

|∆VH8|>|∆VHi,i=1−7,9|, |∆VH7|>Vℎ8, |∆VHj,j=1−6,9|<Vℎ8 H3

|∆VH8|>|∆VHi,i=1−7,9|, |∆VH9|>Vℎ8, |∆VHj,j=1−7|<Vℎ8 H4

Supplementary Figure 12. Output comparison of pressing D1-D4.



Supplementary Figure 13. Output comparison of pressing F1-F4.

Supplementary Figure 14. Output comparison of pressing H1-H4.



Supplementary Table 7. Performance comparison of sensors with similar

functions

Ref. Magnetization

method

Linearity* Hall Sensor Types Resolution

[4] sinusoidal

magnetization

N/A Commercial:

MLX90393

3*3

[5] Symmetrical up

and down

0.95 Commercial:

MLX90393

2*2

[6] Opposite

magnetization

0.97 Commercial:

MLX90393

4*4

Our

work

Periodic

magnetization

0.97 Graphene Hall sensor 6*6



Supplementary Material Appendix A

The Hall sensor detects this variation in the magnetic field and outputs a corresponding

Hall voltage.

Figure A1-1. Schematic diagram of the magnetic tactile sensor.

For a magnetic film with a specific magnetization direction, when the film is not

pressed, the initial magnetic field strength detected by the Hall sensor is:

Bmag_initial=
Bdisc
rdisc3

(A-1)

Where, ​ Bdisc​ is the initial magnetic field at the pressed point, and ​ rdisc ​ is the

distance between the Hall sensor and the pressed point. This distance can also be

expressed as:

rdisc= dx2+dy2+zdisc2 (A-2)

Here, ​ dx​ is the x-component of the horizontal distance between the Hall sensor

and the pressed point, ​ dy​ is the y-component of the horizontal distance, and

​ zdisc ​ is the initial vertical distance between the Hall sensor and the pressed point.

Substituting Equation (A-1) into Equation (A-2), we obtain:

Bmag_initial=
Bdisc

dx2+dy2+zdisc2 1.5
(A-3)

When a certain pressure F is applied to the magnetic film at the pressed point, the

vertical displacement of the point is Δz. This results in a change in the magnetic flux



density beneath the film. The variation in the magnetic field detected by the Hall sensor

is expressed as:

∆Bmag≈
∂Bmag
∂zdisc

∆z=
3Bdisczdisc

dx2+dy2+zdisc2 2.5 ∆z
(A-4)

For a given force F applied by the 3D-printed cylindrical indenter, the indentation

depth on the elastomer surface can be estimated as:

∆z=
F 1−υ2

2Era

(A-5)

where ​ υ ​  is the Poisson’s ratio of the material, ​ E​  is the Young’s modulus,

and ​ ra​  is the radius of the cylindrical indenter. Substituting this expression into

Equation (A-4), we obtain:

∆Bmag=
3zdisc 1−υ2

2Era dx2+dy2+zdisc2 2.5 BdiscF
(A-6)

It can be concluded that the magnetic field variation is approximately linearly

proportional to the applied force. Defining the linear magnetoelastic coefficient as μ,

we obtain ∆Bmag=μF. Combining the Hall voltage formula, the relationship between the

change in Hall voltage and the applied force can be derived as:

∆VH=
RH
H
I∆Bmag=

RHI
H
μF (A-7)

where ​ H​ is the thickness of the Hall device, ​ RH​ is the Hall coefficient, and

​ I​ is the magnitude of the current applied to the Hall element.


